

Defining Hotspots, Delta Vision, Mission, Goals, Policy Options of BDP 2100 and BDP 2100 Strategies/Measures of Water Resources

<u>Presented By</u> Mohd. Enamul Haque Joint Chief(Joint Secretary) General Economics Division Bangladesh Planning Commission

Bangladesh Delta Plan 2100 and it's Context:

- 6th most vulnerable country in the world in terms of risks from natural hazards.
- Deltaic formation is still going on
- Frequent tidal surge, salinity, flooding, river erosion, earthquakes and cyclones
- Resulting continuous challenge to food security and livelihood security
- Other challenges include growing urbanization, declining land availability, infrastructure shortages, energy supply constraints and dearth in labour skills
- Climate Change exacerbates all these
- In view of the long term challenges presented by climate change and natural hazards, the Government has formulated a long term **Bangladesh Delta Plan 2100 (BDP 2100).**

Principles and Features of BDP 2100

BDP 2100 is a

- Iong term and visionary plan covering the 21st Century
- Holistic and integrated Plan, considering many themes and sectors, individual strategies as well as integrated ones for the whole country considering the needs of all water-related sectors have been articulated in a single plan
- Techno- economic water centric plan, which covers both technical and economic issues (GDP growth, Poverty Reduction, Employment, Food Security, Investment, etc.)
- Implementable plan having an investment programme upto year 2030 linked with financial resources
- BDP 2100 has strongly focused on Climate Change issues and Adaptive Delta Management (ADM) approach which is a paradigm shift in planning and managing projects.

BDP 2100 Vision & Goals

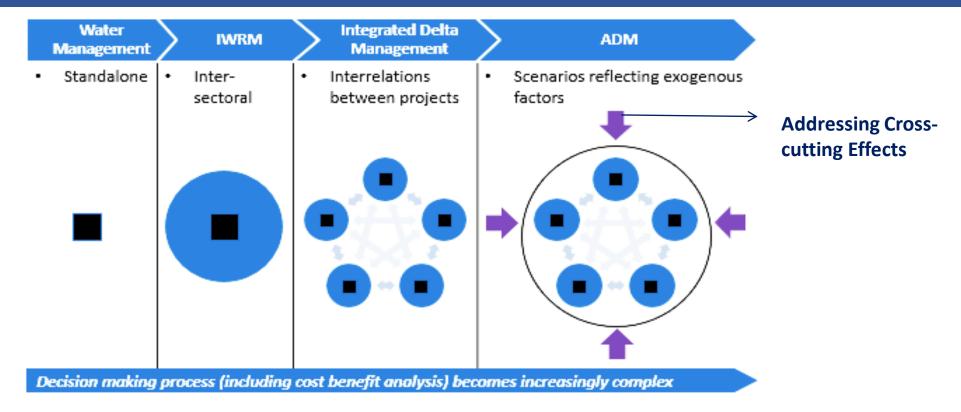
Vision: Achieving Safe, Climate Resilient and Prosperous Delta

Mission:

Ensure long term water and food security, economic growth and environmental sustainability while effectively reducing vulnerability to natural disasters and building resilience to climate change and other delta challenges through robust, adaptive and integrated strategies, and equitable water governance.

Higher Level Goals

<u>Goal 1</u>: Eliminate extreme poverty by 2030 <u>Goal 2</u>: Achieve Upper Middle Income Country (UMIC) status by 2030 <u>Goal 3</u>: Being a prosperous country beyond 2041

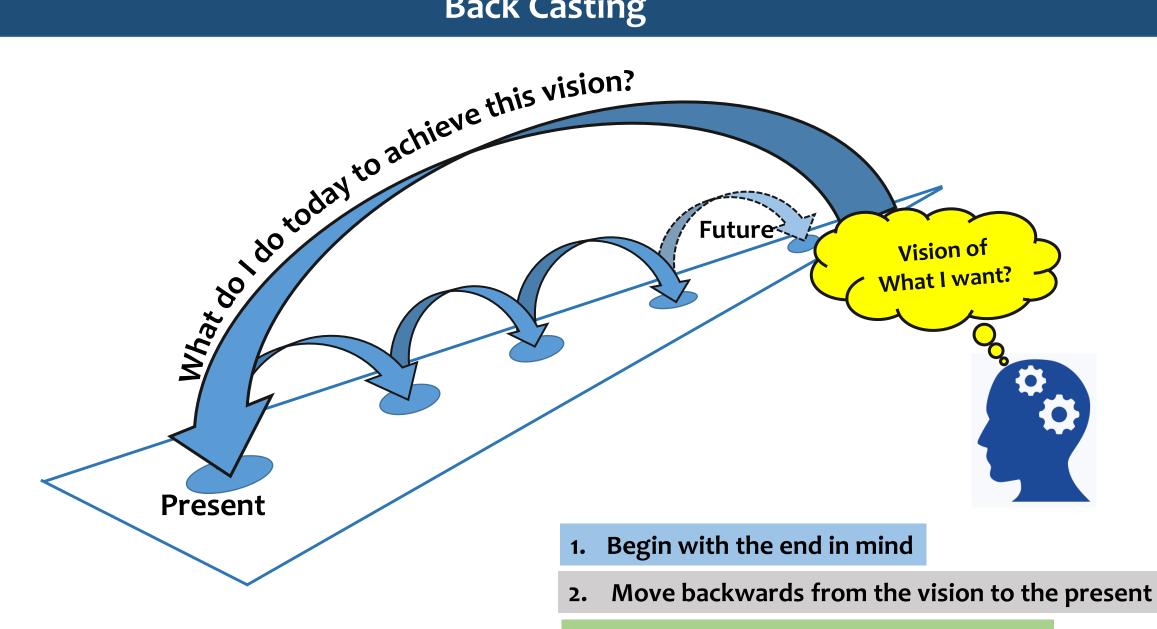

Delta (BDP 2100) Goals

<u>Goal 1</u>: Ensure safety from floods and climate change related disasters <u>Goal 2</u>: Ensure water security and efficiency of water usages <u>Goal 3</u>: Ensure sustainable and integrated river systems and estuaries management <u>Goal 4</u>: Conserve and preserve wetlands and ecosystems and promote their wise use <u>Goal 5</u>: Develop effective institutions and equitable governance for in country and trans-boundary WR

management

Goal 6: Achieve optimal use of land and water resources

Paradigm Shift in Planning to Adaptive Delta Management


ADM asks:

What could happen in the **future**, and what can we do **now** to achieve our goals, regardless of how the future unfolds? Plan through **Back Casting**.

ADM deals with uncertainties is the key issue:

- ✓ 'what to do and when to do it?'
- ✓ 'not too much, not too little'
- ✓ 'not too early, not too late'

Back Casting

Move step by step towards the vision 3.

Framework for Strategy Development

Strategies developed at 3 Levels:

- National Level Strategies
 - Flood Risk Management
 - Fresh Water
- Hotspot Level Strategies

- Strategies for Cross-cutting Issues
 - Sustainable Land Use and Spatial Planning
 - Agriculture, Food Security and Livelihood
 - Trans-boundary Water Resources Management
 - Dynamic Inland Water Transport
 - Blue Economy
 - Renewable Energy

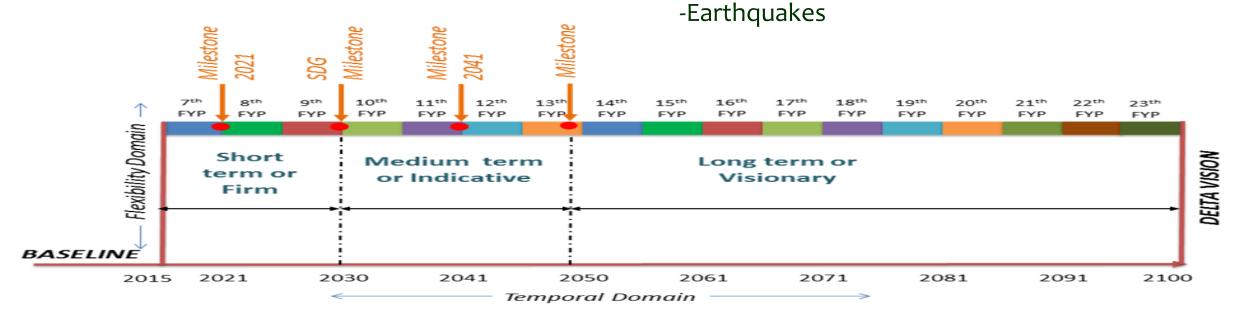
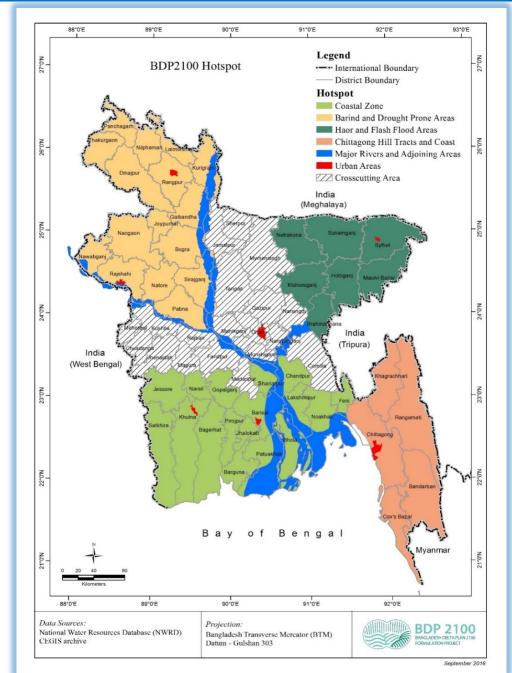


Figure: Time Frame of BDP 2100 Strategy

Hotspots: Planning and Implementation Units of BDP 2100

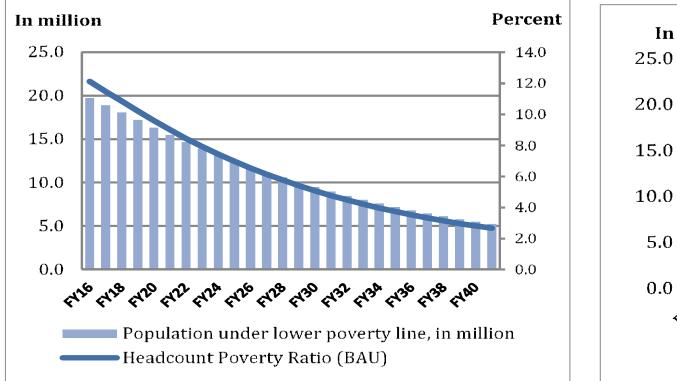
Hotspot is defined as **"a place of significant activity or danger"**. Hotspots are prototypical areas where similar hydrological and climate change vulnerability characteristics and problems converge also influenced by natural hazards.

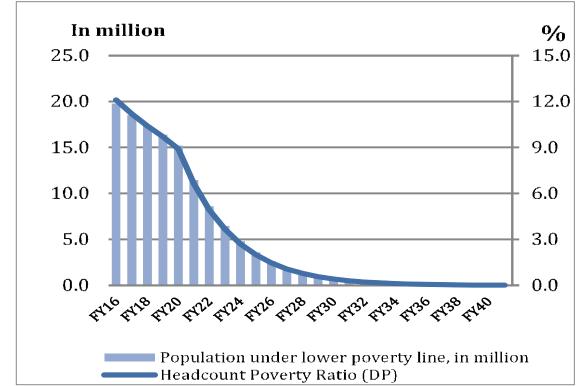

In BDP 2100, Hotspot is a broad grouping of districts and areas facing similar risks evolved by Hydrology, climate change and natural hazards .

The remaining area is identified as **"Cross-cutting"** areas characterized by a combination of issues and challenges e.g. floods, drought, river bank erosion, sedimentation, groundwater depletion, water pollution and water supply and sanitation.

Six Hotspot Areas

Six (6) Hotspot areas have been identified :

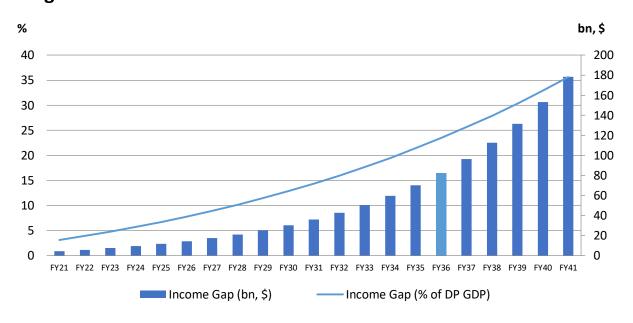

- 1. Coastal Zone (27,738 sq km);
- 2. Barind and Drought Prone Areas (22,848 sq km);
- 3. Haor and Flash Flood Areas (16,574 sq km);
- 4. Chattogram Hill Tracts (13,295 sq km);
- 5. River Systems and Estuaries (35,204 Sq km); and
- 6. Urban Areas (19,823 sq km).


GED, Bangladesh Planning Commission

BAU vs BDP2100

Extreme Poverty in BAU Scenario

Extreme Poverty in BDP 2100 Scenario



Macroeconomic Analysis done for BDP 2100 reveals that in Business As Usual (BAU) policy option, the extreme poverty will be eradicated around 2041. But, if the country adopt Delta Plan policy option the extreme poverty could be eradicated around 2027.

December 9, 2020

Implication of BDP 2100 for Poverty Eradication

Income Gap between BAU Scenario and Government's scenario with 9% growth

There is an average loss of real GDP of 1.3% per year in this scenario compared with the government's target of maintaining 9% GDP growth until FY2041. This would add up to an approximate loss USD 741 billion by FY 2041, estimated as the cumulative loss of income by FY2041 between BAU Scenario and the government's 9% growth environment (Figure 5.6 of BDP 2100).

er Capita Nominal GDP (USD, BAU) Per Capita Nominal GDP (USD, Delta Plan) 18000 16422 16000 14000 12000 10000 953 8000 6000 4000 2000

Figure 5.13 of BDP 2100

Bangladesh may fall into the middle income trap in the absence of higher levels of investment on adaptation, requiring much longer time to become a higher middle income country if environmental risks become more severe. It is also conceivable that without the Delta Plan implementation and in the event of the worst case climate change scenario, Bangladesh may not attain UMIC status for a long period of time.

Per Capita Nominal GDP (USD)

Region wise Migration in BAU Scenario (in million)

Region	FY16	FY21	FY31	FY41
Haor	0.05	0.11	0.22	0.34
Coastal	-0.50	-2.29	-6.33	-10.72
CTG Hill	0.02	0.04	0.08	0.12
Urban	0.69	3.97	11.38	19.43
Drought Prone	-0.16	-0.73	-2.02	-3.42
Rivers & Estuaries	-0.34	-1.55	-4.30	-7.29
Less Risky Region	0.24	0.46	0.95	1.47

Region wise Migration in DP Scenario (in million)

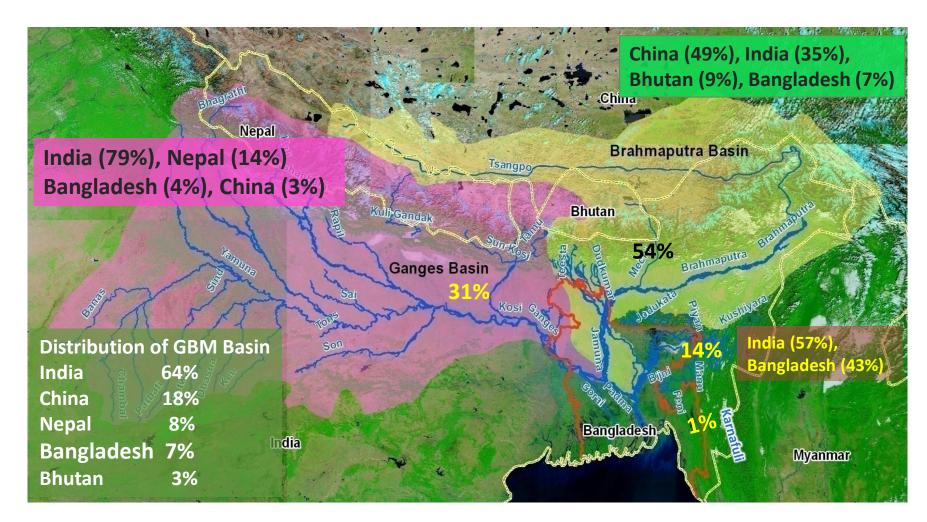
Region	FY16	FY21	FY31	FY41
Haor	0.05	0.15	0.38	0.62
Coastal	-0.50	-1.41	-3.45	-5.67
CTG Hill	0.02	0.05	0.13	0.22
Urban	0.69	1.94	4.76	7.78
Drought Prone	-0.16	-0.45	-1.10	-1.81
Rivers & Estuaries	-0.34	-0.96	-2.34	-3.86
Less Risky Region	0.24	0.66	1.63	2.66

December 9, 2020

Managing Water Resources Chapter 6

Globally, about 97.50% of the water is saline and only 2.50% is fresh water (UNESCO, 2017). Out of this 2.50%, only 0.30% is available as surface water in river systems, lakes and reservoirs.

Average(1980-2009) availability (bcm/year)


Туреѕ		Total	Internal	External	
Renewable Water Resource		1,211/1260	105	1106	
Surface Water		1189.5	84	1105.5	
Ground Water	FAO,2011	21.5	21.02	0.03	
	Hodgson et. al., 2014	28			
Combine inflows of Main Rivers		981			
Dry Season inflow		148 (15% of Total Flow)			
Dry Season inflow of Brammaputra		111			
Inflow of Brhamaputra in February		11			
Inflow of Ganges in February		2			
Total Water Demand in 2011		27.78			
Water Demand (avg. 1986-2010) for Agriculture		25 (90% of Total Water Demand, of which 76% is ground Water)			
		33 (2014)			
Water Demand for Domestic (2011)		2.7 (9.71% of Total Water Demand), 4.1 (2030), 5.4 (2050)			
Water Demand for Industrial Sector (2011)		0.08 (0.029% of Total Water Demand) , 0.18(2030), 0.35(2050)			

Geographical Challenges

Bangladesh ecosystems depend on regional river systems: (Ganges-Brahmaputra/ Jamuna-Meghna)

- Largest dynamic delta of the world
- Around 700 Rivers: 57
 Transboundary (54 with India and 3 with Myanmar)
- 93% catchment area lies outside Bangladesh with annual sediment load of 1.0 to
 1.4 billion tones
- Abundance of water in wet season but scarcity of water in dry season

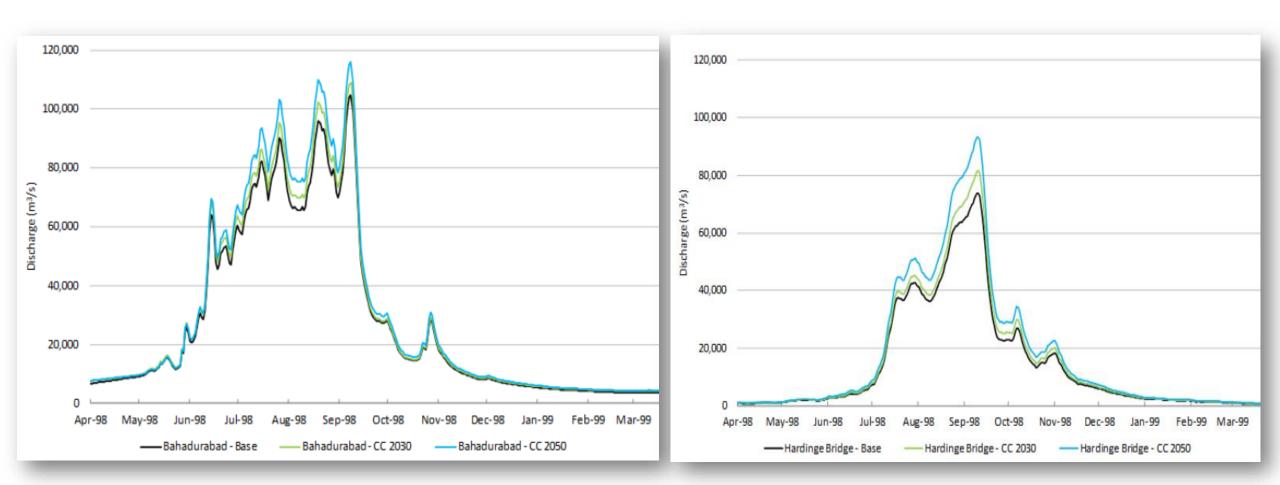


Figure: Climate change impact on flow of the Brahmaputra at Bahadurabad in 2030 and 2050. Source: IWM (2014a). **Max. Discharge**

1998: 1,03,000 m^3/sec 2050: 1,16,00 m^3/sec (CSIRO,2014) Figure: Climate change impact on flow of the Ganges at Hardinge Bridge in 2030 and 2050. Source: IWM (2014a). **Max. Discharge** 1998: 72,000 m^3/sec 2050: 90,000 m^3/sec (CSIRO,2014)

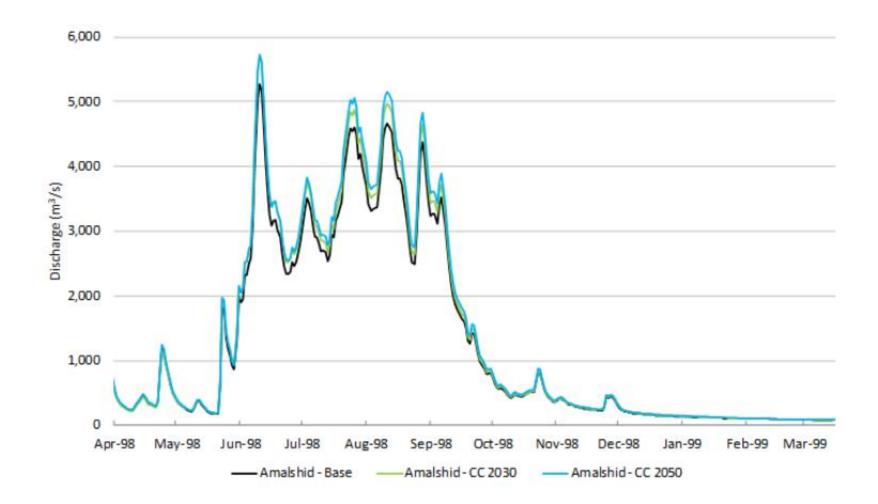


Figure: Climate change impact on flow of the Meghna at Amalshid in 2030 and 2050. Source: IWM (2014a).

History of Mega Floods

Inundation 28%

Inundation 35% Estimated damage US\$ 1.0 billion Death toll 2,055

Inundation 61% Estimated damage US\$ 1.2 billion Death toll 6,500

Inundation 69% Estimated damage US\$ 2.8 billion Death toll 1,100

Inundation 38% Estimated damage US\$2.0 billion Death toll 700

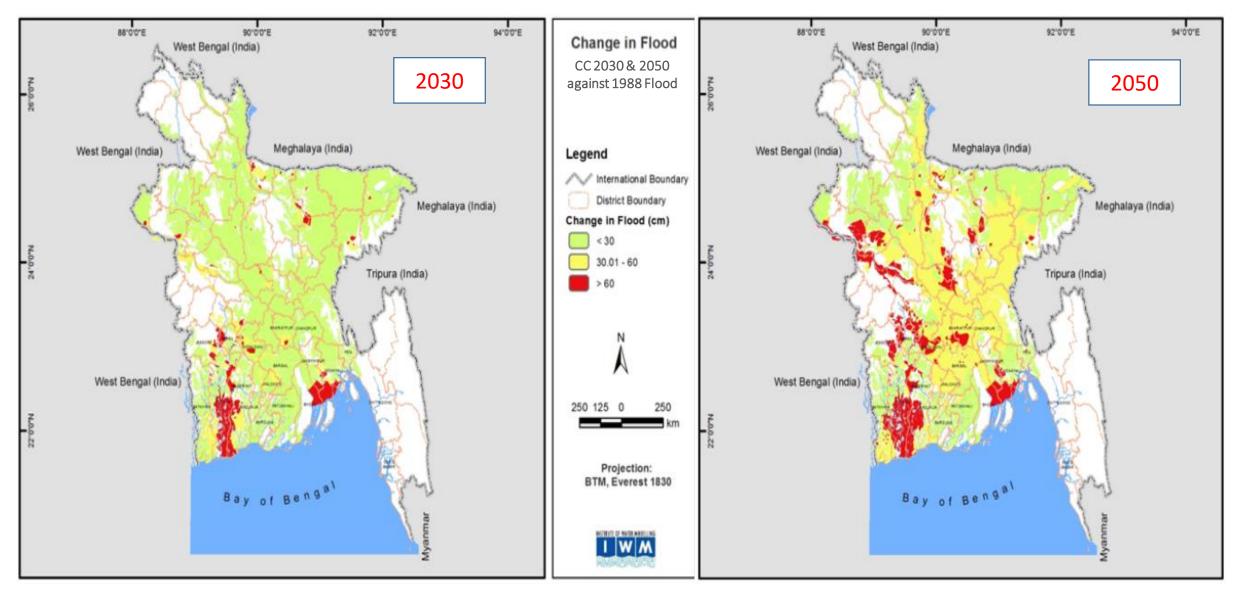
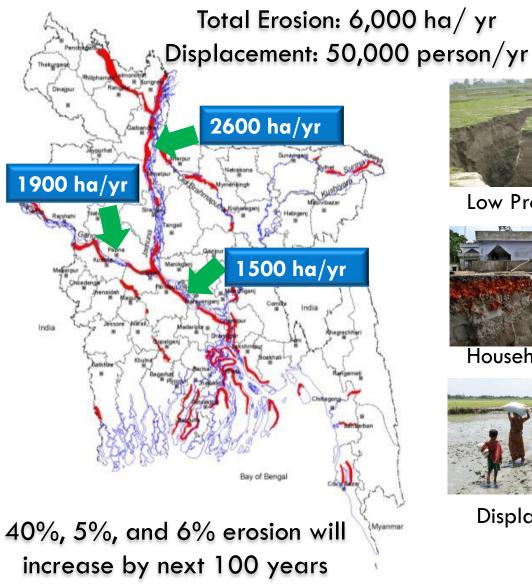
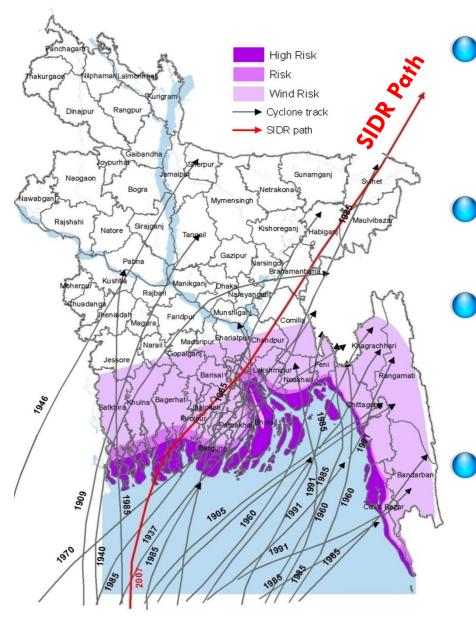



Figure: Increase in depth of flooding for the 1988 flood due to the additional impacts of projected 2030 & 2050 climate change.

River Bank Erosion & Consequences

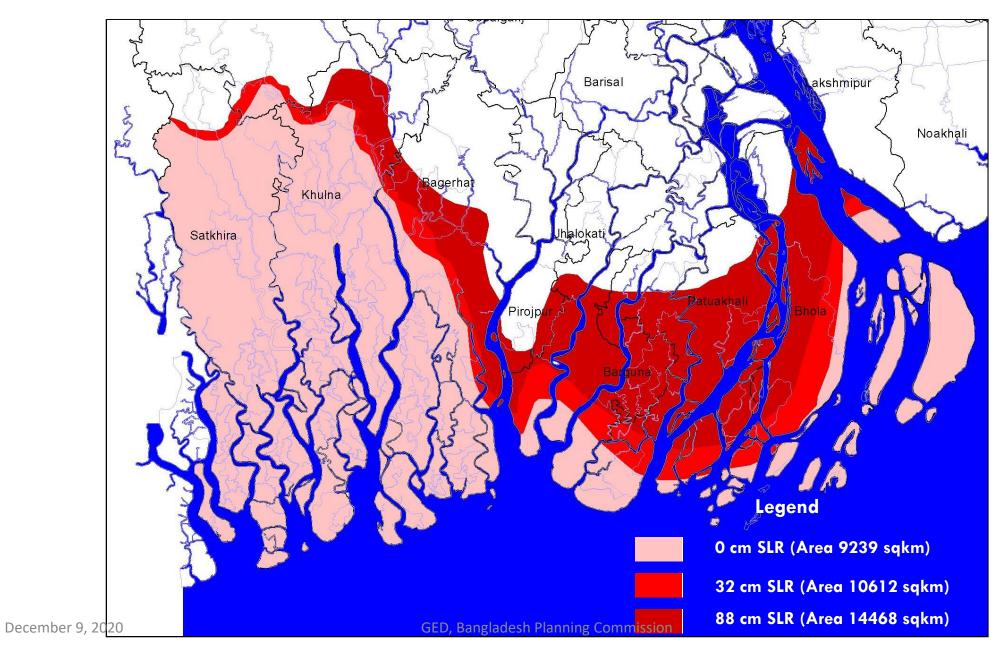
Low Production



Household Loss

Displacement

CC Impact on Cyclone and Storm Surge


Increasing intensity of Cyclones due to Climate Change (10 cyclones in last 30 yrs; 11 Cyclones in 100 yrs from 1876-1977)

Areas vulnerable to inundation more than 1m and 3m, would be 14% and 69%

10-year-return period cyclone will be more intense covering 43% of the vulnerable area, 17% more than current coverage

Coastal embankments, afforestation, evacuation through 10000+ volunteers, warning dissemination etc. are using for cyclone and storm surge management

Increasing Salinity with Sea Level Rise

- Ground Water Depletion
- Arsenic Contamination
- Industrial Effluent
- Flood Plain Connectivity and Degradation of Wetland Ecosystem

Two Types of Strategies for Water Resources Management:

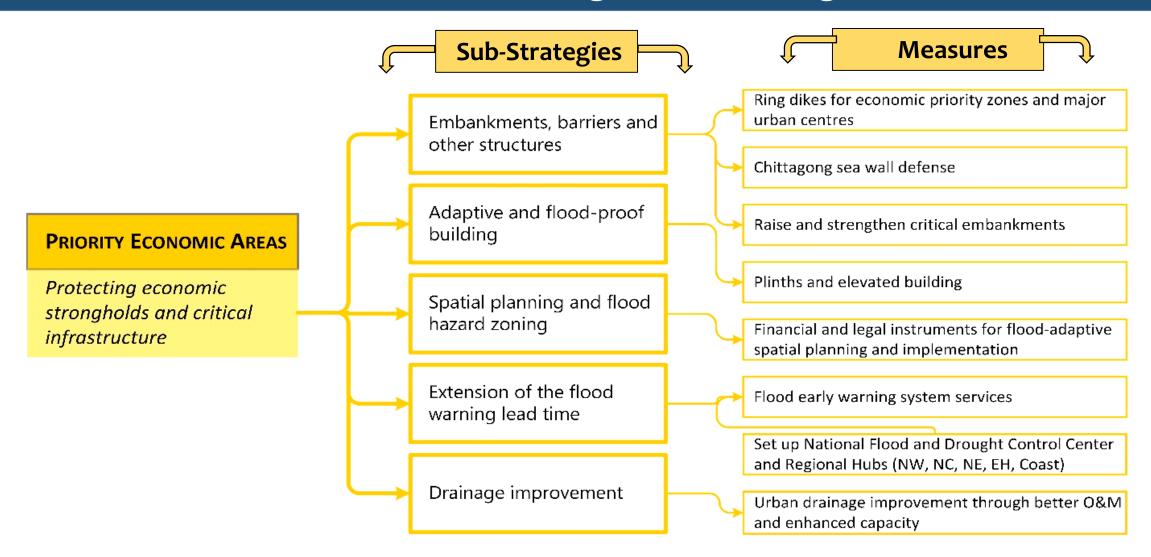
National Strategies

- i) The Flood Risk Management Strategy;
- ii) The Fresh Water Strategy

Hotspot Wise Strategies

- Principles For Flood Risk (FR) Management
 - Supporting the economic development, without endangering the environment;
 - Creating a climate-proof Bangladesh, making optimal use if its natural conditions; and
 - Leaving no one behind, building on resilience.

Strategies For Flood Risk (FR) Management

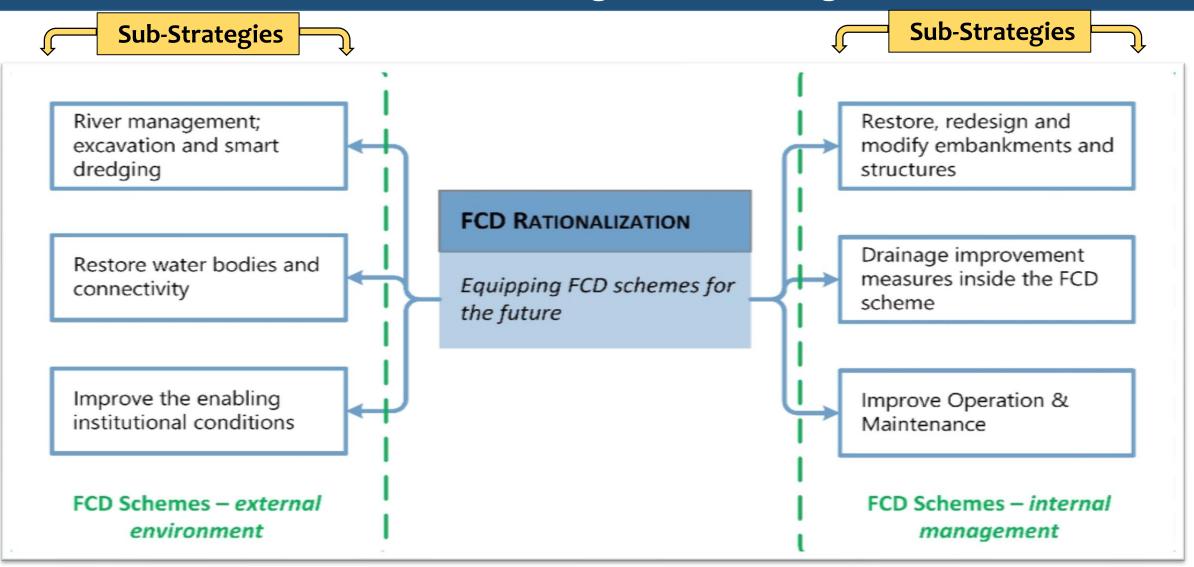

FR1:	Protecting Economic Strongholds and Critical Infrastructure
FR2:	Equipping the FCD Schemes for the Future
FR 3:	Safeguarding Livelihoods of Vulnerable Communities

FR1: Protecting Economic Strongholds and Critical Infrastructure

- ✓ Indicative Flood Protection Levels :
 - 1/100 and 1/250 up to 2030;
 - > 1/250 1/1000 up to 2050, and
 - ➤ 1/1000 1/2500 by 2100;

□ Sub-Strategies

- i. Develop and improve embankments, barriers and water control structures
- ii. Construct adaptive and flood-storm-surge proof building
- iii. Adopt spatial planning and flood hazard zoning
- iv. Extension of the flood warning lead time.
- v. Improvement of Drainage

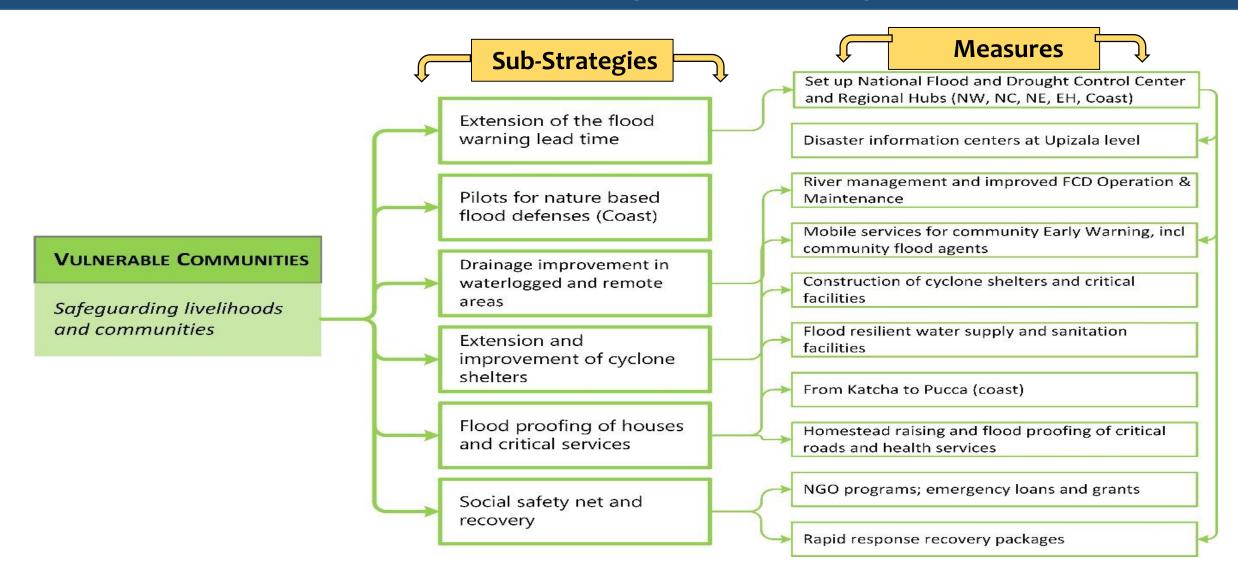

Strategy FR 1: Protecting Economic Strongholds and Critical Infrastructure

FR2: Equipping FCD Schemes for the Future

- ✓ Diversified FCD schemes, with high value infrastructure, industry and high value agriculture:
 - ➤ 1/100 up to 2030,
 - ➤ 1/250 up to 2050; and
 - ➤ 1/1000 by 2100
- ✓ Agriculture based FCD schemes:
 - Current 1/10 and 1/25

G Sub-Strategies

- i. Drainage improvement
- ii. Restoration, redesign and modification of embankments and structures
- iii. Restoration of water bodies and connectivity
- iv. Improve operation & maintenance
- v. River management, excavation and smart dredging

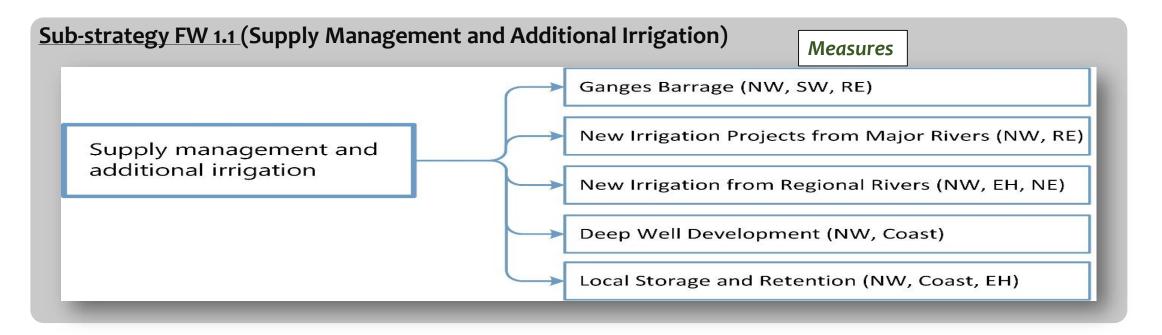


Strategy FR 2: Equipping FCD Schemes for the Future

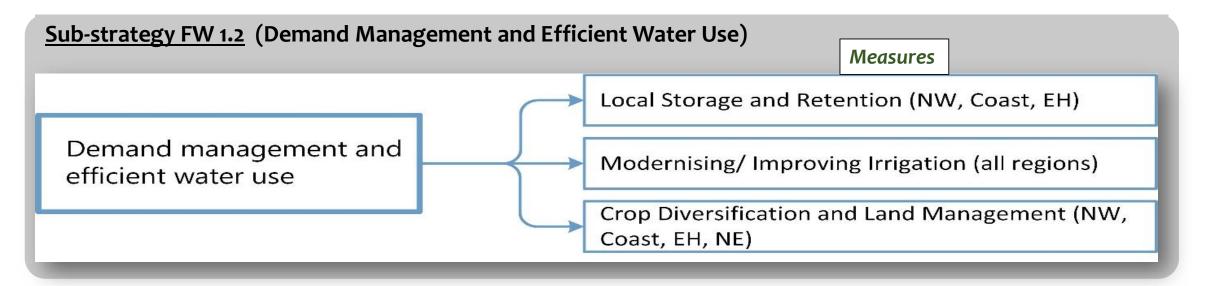
FR3: Safeguarding Livelihoods of Vulnerable Communities

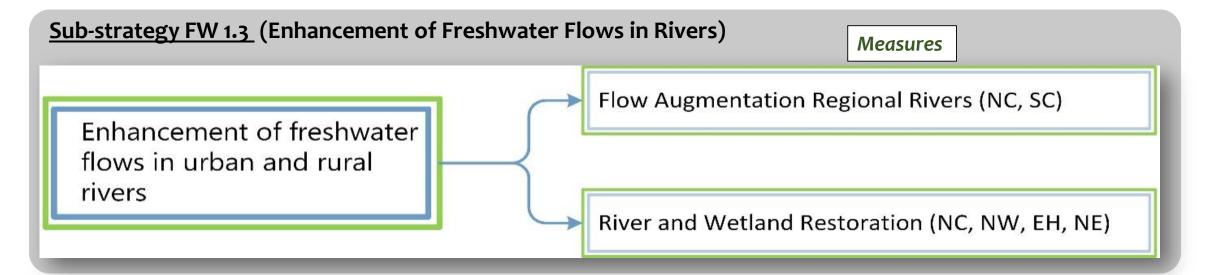
Galaxie Sub-Strategies

- i. Extension of early warning services into the communities
- *ii.* Extension and improvement of cyclone shelters
- *iii.* Flood and storm surge proofing of housing and critical services
- iv. Social safety net and recovery
- v. Pilots for nature based flood defenses
- vi. Improving drainage
- vii. Protection of Chars and its population along with alternative livelihoods

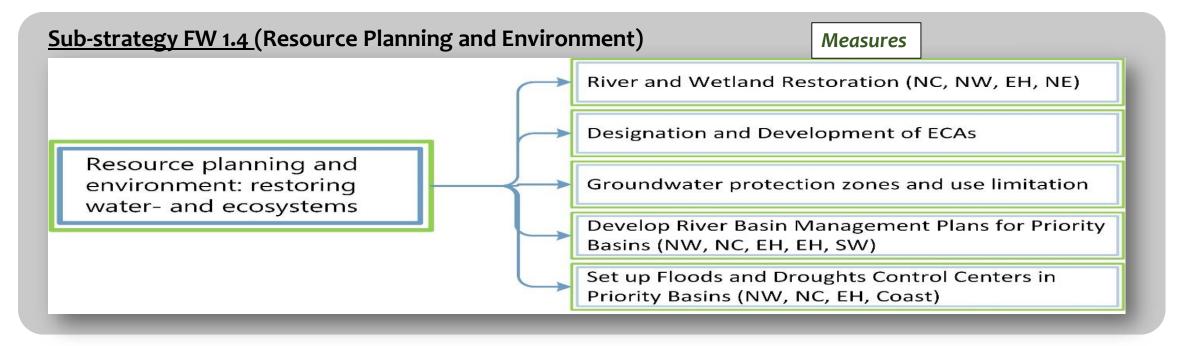

Strategy FR 3: Safeguarding Livelihoods of Vulnerable Communities

December 9, 2020


The Fresh Water Strategy

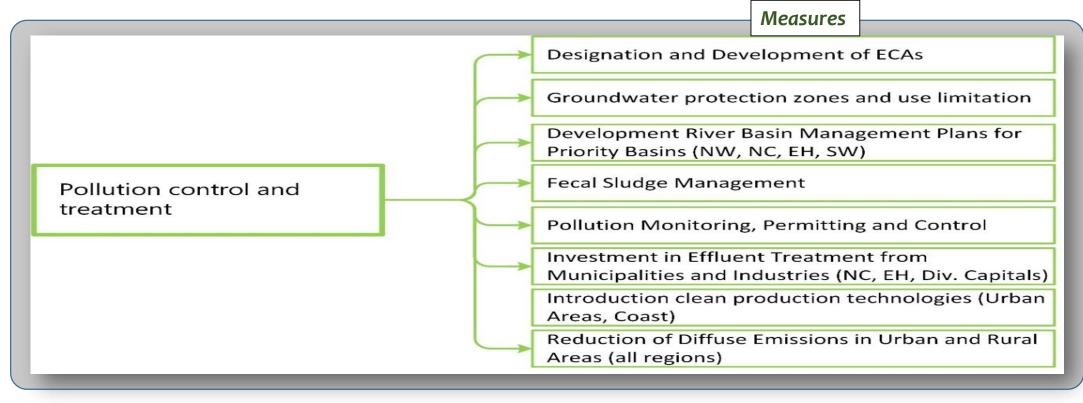

- Strategy FW 1: Ensure Water Availability by Balancing Supply and Demand for Sustainable and Inclusive Growth
- Strategy FW 2: Maintaining Water Quality for Health, Livelihoods and Ecosystems

Sub-Strategies



The Fresh Water Strategy (Sub-Strategies of FW 1)

The Fresh Water Strategy (Sub-Strategies of FW 1)


<u>Sub-strategy FW 1.5 (Ensuring Safe water to sustainable drinking water and sanitation)</u>

- Encourage rain water harvesting wherever possible
- Promote increasing storage in existing water retention bodies

The Fresh Water Strategy (Sub-Strategies of FW 2)

Sub-Strategies for FW2:

i. Pollution control and treatment

Here,

ECAs: Ecologically Critical Areas

Sub-strategy FW 2.1 (Pollution Control and Treatment)

Hotspot Wise Strategies

Six Hotspot Areas:

- ✓ Coastal Zone (27,738 sq. km);
- ✓ Barind and Drought Prone Areas (22,848 sq. Km);
- ✓ Haor- and Flash Flood Areas (16,574 sq. km);
- ✓ Chattogram Hill Tracts (13,295 sq. km);
- ✓ River System and Estuaries (35,204 sq. km); and
- ✓ Urban Areas (19,823 sq. km).

Coastal Zone (27,738 sq. km)

Key Vulnerabilities of the Coastal Zone Hotspots

Table 1.10: Key vulnerabilities of the Coastal Zone Hotspots

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
1. Tidal	ranges from	Tidal height expected to	Will affect at least 50% of coastal zone and
fluctuation	approximately 1.5 m	increase with ASLR	increased salinity and destruction of polder
	in the west to over 4		embankments.
	m in the east and up		
	to 8 m at spring tide		
	near Sandwip		
2.Accelerated		1 m or more by 2100; likely	Inundation of between 17-21% of total area;
Sea Level		to cause significant	significant shortages of drinking water in the
Rise (ASLR)	2.0 mm/year sea	changes in river salinity in	coastal urban areas, scarcity of water for irrigation
	level rise.	the southwest coastal zone	for dry-season agriculture and significant changes
		of Bangladesh during the	in the coastal aquatic ecosystems; loss of farmland;
		dry season (October to	loss of livelihoods; out-migration; destruction of
		May) by 2050	infrastructure; change in mangrove pattern; will
			affect fish habitat and productive freshwater
			fisheries.

Key Vulnerabilities of the Coastal Zone Hotspots

(continued)

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
3. Salinity	Out of 2.86 million ha of coastal	salinity intrusion increase with	7,000-8,400 km² likely to be
intrusion	and offshore lands about 1.0	SLR of 52 cm in 2050	affected; Loss of freshwater
with sea level	million ha (SRDI 2000) of arable		zones in Bagerhat, Barguna,
rise	lands are affected by varying		Barishal, Bhola; salinity will affect
	degrees of salinity.		2.9 to 5.2 million people
4. Cyclones	Number of cyclones decreasing	Increased intensity of cyclones	Devastating effects on
	but intensity increasing	with high wind speeds up to and	homesteads, crops, livestock; salt
		over 250 km per hour	water intrusion; water logging.
5. Storm	Current storm surge heights are	Future storm surge heights will	All current polders will be flooded
surge	topping over polder	increase due to higher wind	with prolonged water logging;
	embankments (Sidr and Aila	speeds.	damages to infrastructure,
	cyclones); estimated cost of		agriculture and aquaculture.
	damage of Sidr alone was at US\$		
	1.7 billion (World Bank, 2010).		

Note: BAU Scenario (i.e. no concerted adaptation or mitigation investments) Source: BDP 2100 Technical Team Analysis, GED, 2015

December 9, 2020

Coastal Zone Strategy

Strategy CZ 1: Increase drainage capacity and reduce flood risk at coastal zone.

Strategy CZ 2: Balancing water supply and demand for sustainable growth

Strategy CZ 3: Reclaim New Land in the Coastal Zone

Sub-Strategies

Strategy CZ 1: Increase Drainage Capacity and Reduce Flood Risk at Coastal Zone.

- i. Diminish Drainage Congestion
- ii. Flood Risk Protection
- iii. Flood Risk Prevention
- iv. Flood Risk Preparedness

Coastal Zone Strategy

Strategy CZ 2: Balancing Water Supply and Demand for Sustainable Growth

Sub-Strategies

- i. Supply management and additional irrigation
- ii. Demand management and efficient water use
- iii. Resource planning, protection of environment;
- iv. Safe and reliable waterway transport
- v. Restoration of rivers for fresh water supply including river basin management for cross boundary rivers

Strategy CZ 3: Reclaim New Land in the Coastal Zone

- i. Conduct research on morphological behavior of the Meghna estuary to assess the effect and potential of land reclamation
- ii. Accelerate land reclamation process in the Meghna Estuary

Strategy for the Sundarbans

Strategies for the Sundarbans

Strategy 1: Planting in All The Layers of a Forest at The Same Time

Strategy 2: Not Being Competitive Against Nature Rather Being Collaborative

Strategy 3: Maintenance of Perennial Tidal Flow

December 9, 2020

GED, Bangladesh Planning Commission

Barind and Drought Prone Areas (22,848 sq. Km)

Key Vulnerabilities of the Barind and Drought Prone Areas Hotspot

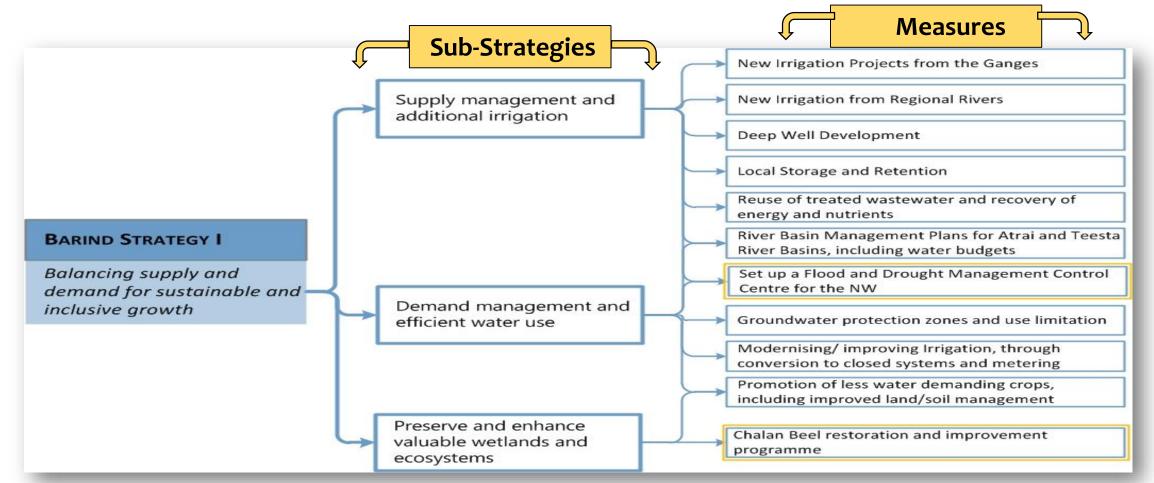
Table 1.11: Key Vulnerabilities of the Barind and Drought Prone Areas Hotspot

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
1. Temperatures	Increase in minimum	Increases in temperatures	Reduced crops and livestockproduction;
	temperatures by 0.85 °C	of up to 2.0 °C or more	increase in disease and pest infestation;
	between 1948 – 2011;		extinction of some flora and fauna.
	maximum temperatures		
	increased by 0.5 °C		
2. Dry periods /	Long period of	Increase in number of dry	Further reduction in groundwater table;
drought	consecutive dry days	days and drought	water scarcity for irrigation and
			household consumption; up to 39 million
			people could be affected; land use
			pattern, plant species composition in the
			Barind ecosystem may change and also
			increase in top soil erosion

(to be continued)

Key Vulnerabilities of the Barind and Drought Prone Areas Hotspot

(continued)


Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
3. Reduced groundwater levels	Uncontrolled abstraction of groundwater for irrigation and	Falling groundwater tables; poor re-charging of groundwater due to prolonged dry spells and	output; water scarcity; increase in water, sanitation and hygiene problems and
4. Reduced wetlands	consumption Number of water bodies, their area and water holding capacity reducing	drought Low water holding capacity, reduction in ecosystem goods and services	Reduce water availability for domestic and irrigation purpose, rise in temperature due to low evapo- transpiration, affect food security and nutrition, disease and pests outbreak, land degradation and loss of biodiversity.

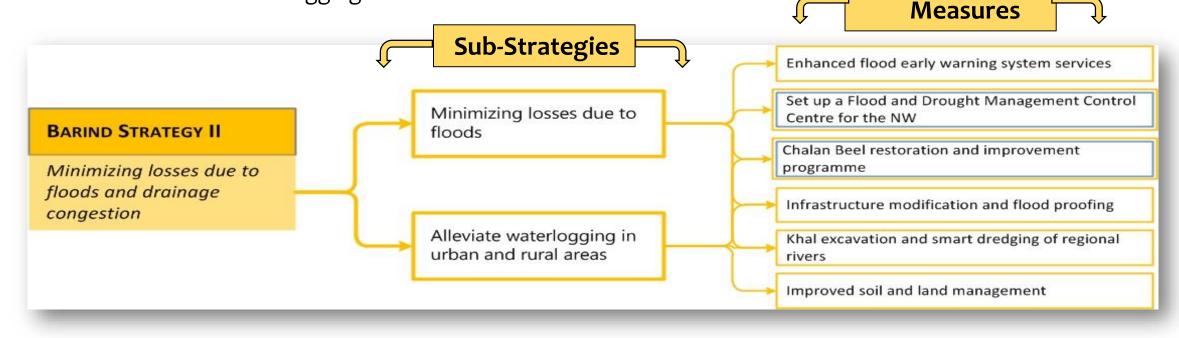
Source: BDP 2100 Technical Team Analysis, GED, 2015

Barind and Drought Prone Areas Strategy

Barind and Drought Prone (DP) Areas Hotspot strategy consists of the following Four related but independent strategies:

Strategy Barind (DP) 1: Balancing Supply and Demand for Sustainable and Inclusive Growth

December 9, 2020


Strategy Barind (DP) 1 : Balancing Supply and Demand for Sustainable and Inclusive Growth

Barind and Drought Prone Areas Strategy

Strategy Barind (DP) 2 : Minimising losses due to floods and drainage congestion

Sub-Strategies

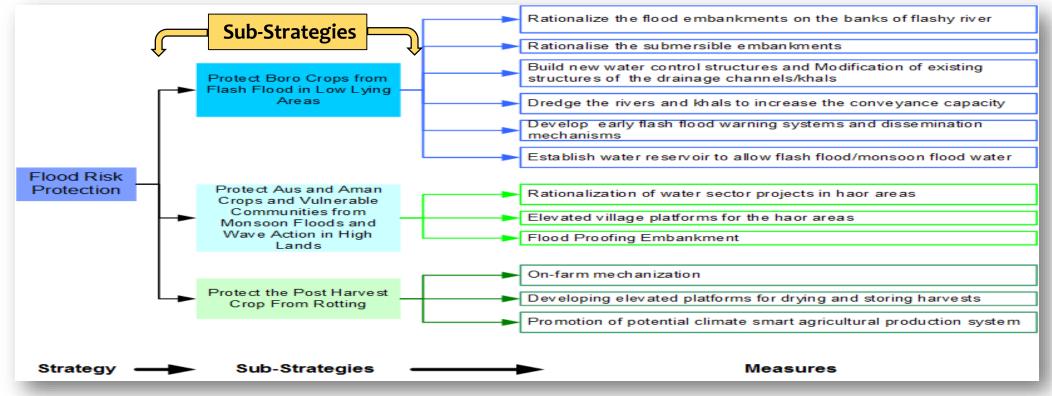
- i. Minimizing losses due to floods
- ii. Alleviate water logging in urban and rural areas

Strategy Barind (DP) 3: Ensuring water supply and sanitation.

> Strategy Barind (DP) 4: Management of cross-boundary water issues including river basin developments.

Haor- and Flash Flood Areas (16,574 sq. km)

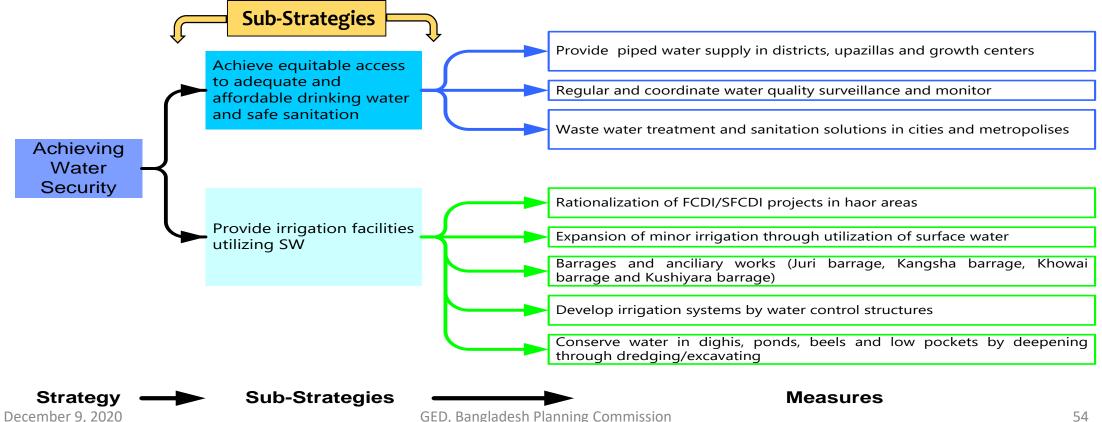
Key Vulnerabilities of the Haor and Flash Flood Areas Hotspot


Table 1.12: Key Vulnerabilities of the Haor and Flash Flood Areas Hotspot

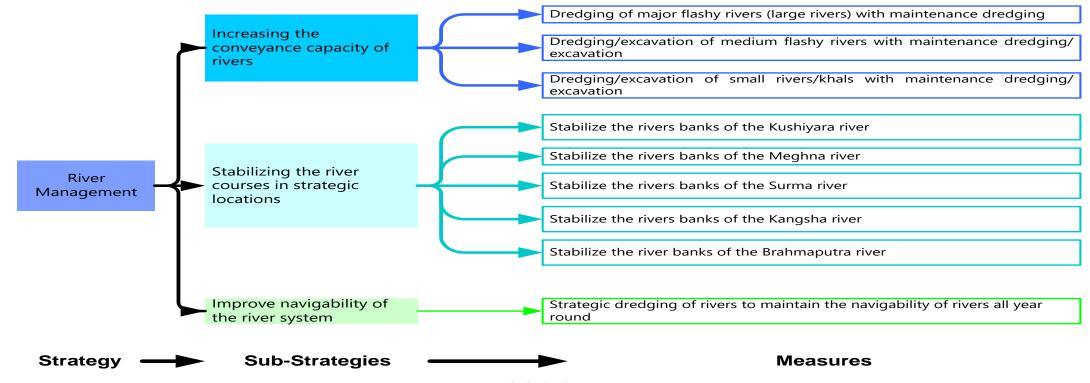
Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
1. Precipitation	Highest rainfall in Sylhet	Increase between 300mm	Increases in mean annual discharge
	Basin due to its proximity to	in southeast to 800mm in	rivers; may cause flash floods, extensive
	Cherapungi, India, highest	northwest with increase	area under flooding, damage to
	rainfall are in the world	in intensity	infrastructure, destruction of crops
2. Subsidence	Tectonically active and	Further subsidence and	Vital source for fisheries, irrigation water,
and decreased	subject to gradual	river avulsion due to	ecosystem functioning and navigation
sediment	subsidence and westward	seismically active area	may be disturbed affecting 1.9 million ha
supply	avulsion of Brahmaputra	(high magnitude	of the hotspot
	(Assam earthquake 1950)	earthquake probable)	
3. Land filling,	Shrinkage in wetlands (area	Continuing land filling,	Reduced flood holding areas; reduced re-
encroachment	and volume); 40% out of	encroachment, land use	charging of groundwater; loss of crucial
, land use	260 species of freshwater	change	habitat and breeding grounds, and
change	fish threatened with		livelihoods of poor
	extinction (IUCN)		

Strategies for Haor and Flash Flood Areas

Strategy HR 1: Protect agriculture and vulnerable communities from flood


- HR 1.1: Protect Boro Crops from Flash Flood in Low Lying Areas
- HR 1.2: Protect Aus and Aman Crops from Monsoon Floods in High Lands
- HR 1.3: Protect the Post-Harvest Crop from Rotting

Strategies for Haor and Flash Flood Areas

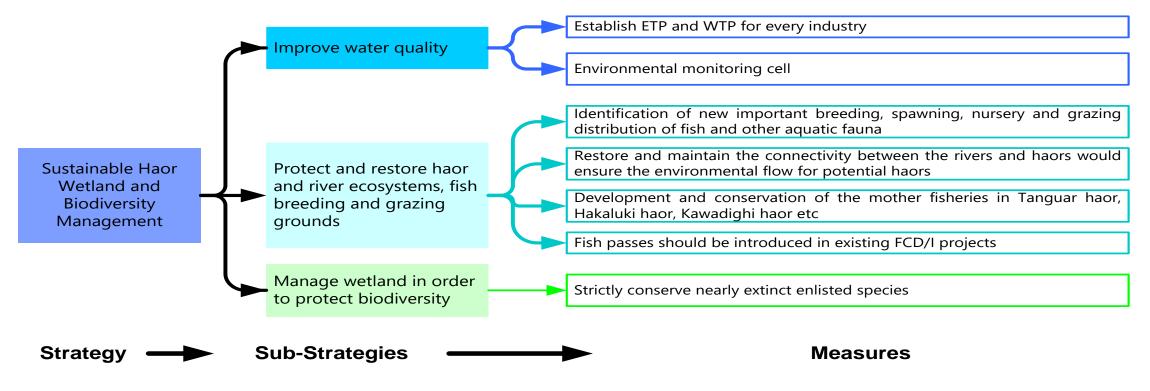

Strategy HR 2: Achieving Water Security

- HR 2.1: Achieve equitable access to adequate and affordable drinking water and safe sanitation.
- Providing irrigation facilities utilizing surface water HR 2.2:

Strategy HR 3: River Management

- HR 3.1: Increasing the conveyance capacity of rivers
- HR 3.2: Stabilizing the river courses in strategic locations for protecting urban and rural areas
- HR 3.3: Maintaining navigability of the medium and minor rivers

Strategies for Haor and Flash Flood Areas


Strategy HR 4: Sustainable Haor Ecosystem and Biodiversity Management

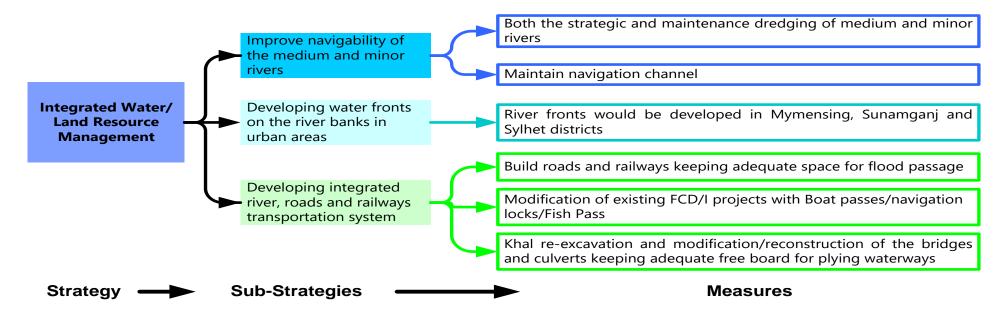
Sub-Strategies

HR 4.1: Improve water quality

HR 4.2: Protect and restore haor and river ecosystems, fish breeding and grazing grounds

HR 4.3: Manage wetland in order to protect biodiversity

Strategies for Haor and Flash Flood Areas


Strategy HR 5: Institutional Development

Sub-Strategies

- HR 5.1: Increase Institutional Capacity
- HR 5.2: Sectoral Coordination
- HR 5.3: Resolve water issues of common/border rivers through regional cooperation
- HR 5.4: Strengthen the community participation

Strategy HR 6: Integrated Water/Land Resource Management

- HR 6.1: Maintaining navigability of the medium and minor rivers
- HR 6.2: Developing water fronts on the river banks in urban areas
- HR 6.3: Developing integrated river, roads and railways transportation system

Chattogram Hill Tracts (13,295 sq. km)

Key Vulnerabilities of the Chattogram Hill Tracts Hotspot

Table 1.20: Key Vulnerabilities of the Chattogram Hill Tracts Hotspot

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
1. Loss of forest	Increased water runoff, soil	Increasing	Loss of fertile soils, farmland, crops,
and vegetation	erosion, and drying up of water	sedimentation of	homesteads and livelihoods; longer
cover	springs and streams as a result	Karnaphuli river	treks in search of water (especially for
	of climate change		women and children)
2. Flash floods in	Land degradation,	Increasing soil	Flash floods, loss of life and crops,
hilly terrain	deforestation, land use change.	erosion, sanding of	increased river sedimentation; river
		rivers, bank erosion in	navigation increasingly difficult in the
		coastal plains, flash	Eastern Hill Region
		floods, drainage	
		problems	

Strategies for Chattogram Hill Tracts

Strategy CH 1: Protect economic zones and towns from floods and storm surges

Sub-Strategies

CH 1.1: River flood risk management

CH 1.2: Cyclonic storm surge and tidal flood risk management

Strategy CH 2: Ensure water security and sustainable sanitation

Sub-Strategies

CH 2.1: Increase water use efficiency of all sectors and ensure sustainable water use CH 2.2: Development of sustainable and safe water supply and sanitation system

Strategy CH 3: Ensure integrated river management

Sub-Strategies

CH 3.1: Integrated sediment and erosion management

CH 3.2: Integrated management of rivers and hilly streams

Strategy CH 4: Maintain Ecological Balance and Values (assets)

Sub-Strategies

CH 4.1: Protect and restore water related ecosystems, including forests and hill sides

CH 4.2: Promote wise-use of soils and water bodies for sustainable livelihoods

Strategies for Chattogram Hill Tracts

Strategy CH 5: Increase institutional capacity for integrated water resources management Sub-Strategies

CH 5.1: Strengthen institutions and cooperation for integrated holistic watershed management CH 5.2: Early warning, storm surge and flood risk preparedness

Strategy CH 6: Develop multi-purpose resources management system for sustainable growth

Sub-Strategies

CH 6.1: Development of safe, reliable and optimal use of land, water ways and energy CH 6.2: Strengthen resilience of livelihoods and sustainable food production.

River System and Estuaries (35,204 sq. km)

Key vulnerabilities of the River Systems and Estuaries Hotspot

Table 1.19: Key vulnerabilities of the River Systems and Estuaries Hotspot

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
1. Riverine	By 2013, riverine erosion along	With 13% increase in precipitation	Loss of farmland, crops, homesteads and
erosion and	the Ganges, the Jamuna, the	projected and annual discharge of	livelihoods affecting thousands of
accretion	Padma and the Lower Meghna	rivers over the the Ganges- the	hectares along major rivers; damage to
	recorded at 179,258 ha while	Brahmaputra- the Meghna floodplains,	infrastructure
	accretion only 75,263 ha	riverine erosion could increase	
2. Drought /	Upstream reduction of flows	Aggravation of current problems	Loss of agricultural production, water
dry periods	on transboundary rivers;		scarcity, disturbed navigation in the
and reduced	difficulty of navigation during		Northwest Region, reduced groundwater
riverine flows	dry season, high abstraction of		recharge
	groundwater; water scarcity		
	for irrigation		
3. River	Maintaining navigation	Increasing detrimental effects	Reduced / blocked navigation,
avulsion,	facilities, rivers becoming		deterioration of water quality from
sedimentation	morphologically inactive,		discharged effluence and waste materials
off-take,	banks become erosion prone		from industries in the North-Central
subsidence	in wet season		Region; maintaining sediment balance in
			the Northeast Region will be difficult

63

Key vulnerabilities of the River Systems and Estuaries Hotspot

(continued)

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
4. Tidal	Lack of fresh water,	Loss of land from SLR,	In the Southwest and South-Central
fluctuations	salinity, groundwater	increase in salinity, loss of	increase in vulnerability and losses in
and SLR	arsenic and subsidence of	polders to storm surges,	agricultural production, possible negative
	polders	water logging, SLR	health impacts from salinity, and out-
			migration due to loss of livelihoods
5. Flash	Land degradation,	Increasing soil erosion,	Increasing water scarcity in dry periods;
floods in hill	deforestation, land use	sanding of rivers, bank	flash floods, loss of life and crops, increased
terrain and	change, drying up of	erosion, flash floods,	river sedimentation; river navigation
dry periods	springs	drainage problems	increasingly difficult in the Eastern Hill
			Region

Source: BDP 2100 Technical Team Analysis, GED, 2015

Strategies for River Systems and Estuaries

Strategy RE 1: Provide adequate room for the river and infrastructure to reduce flood risk

Sub-strategies:

- i. Reduce flood risk by construction of new embankments and repair, upgrade or maintenance of existing embankments
- ii. Maintain discharge and drainage capacity of rivers, tributaries and branches by strategic dredging
- iii. Improve flood resilience of properties and infrastructures
- iv. Secure discharge and storage capacity by allowing space for the river and by avoiding or removing encroachments and by avoiding constriction by bridges.
- v. Reduce extreme discharges

Strategy RE 2: Improvement of the conveyance capacity as well as stabilize the rivers

Sub-strategies:

- i. River stabilization and channelization with use of combined river training works and river bank protection
- ii. Controlled and accelerated stabilization of newly formed (char) lands and land reclamation December 9, 2020 GED, Bangladesh Planning Commission

Strategies for River Systems and Estuaries

Strategy RE 3: Provide fresh water of sufficient quantity and quality

Sub-strategies:

- i. Secure sufficient fresh water trans boundary inflow during the dry season
- ii. Restore and maintain flow distribution (connectivity) from main rivers to branches and floodplains
- iii. Optimise the distribution of fresh water by water retention and flow diversion

Strategy RE 4: Maintain ecological balance and values (assets) of the rivers

Sub-strategies:

- i. Preservation of ecosystems
- ii. Restoration and revitalization of ecosystems including wise use of resources

Strategy RE 5: Allow safe and reliable waterway transport in the river system

Sub-strategies:

- i. Improve navigability of the river system
- ii. Improve marine infrastructure facilities

Strategy RE 6: Strengthening river and estuaries management in the newly accreted Char areas

Urban Areas (19,823 sq. km)

Key Vulnerabilities of the Urban Areas Hotspot

Table 1.23: Key vulnerabilities of the Urban Areas Hotspot

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
1. Urban	Settlements in hazardous areas such	increasing risk of floods in inner	Loss of life and property; rescue and relief
sprawl,	as high flood risk areas, riverbeds,	city areas; breakdown of basic	efforts increasingly hampered and
unplanned	coastal flood plains, cyclone and	services – water supply, sanitation,	difficult; vulnerable and poor in slums will
settlements	storm surge risk areas, and eroding	waste disposal; increase in water	suffer most
and	areas along the rivers and coasts;	borne diseases; contamination of	
development	slum growth in Dhaka City at 7% per	surface waters; reduced re-	
	annum	charging of groundwater sources	
2. Lowering	Less freshwater available for	Increasing water shortages	Decline of industrial output; social unrest
of	industrial and domestic consumption;		due to water shortages; water borne
groundwater	drying up of shallow tube wells in dry		diseases due to use of contaminated
levels	season		water for drinking
3. Untreated	Surface / groundwater contamination	Increasing pollution of surface	Environmental and health hazards for all
sullage /	from dissolved solids and chemicals	water and groundwater sources	sections of the urban population;
faecal sludge			agricultural output / horticultural
and industrial			products grown close to urban areas
effluents			irrigated with contaminated surface and
			groundwater

(continued)

Vulnerability from	Current State	Expected Change	Consequences under a BAU scenario
4. Air and	Increasing traffic and traffic	Further increase in traffic,	Increase in respiratory illnesses; loss
· ·	jams; increasing emissions		of time sitting in log jams; decline in
	and noise pollution		economic productivity and increasing
			health costs
5. Sea level	Higher tides and blocking of	Risk of permanent	Loss of life and property; reduction in
rise and	receding monsoonal rains	inundation; increasing flood	economic output and loss of GDP
increasing	(e.g. Chattogram) risks; breakdown of disaster		
precipitation		risk management structures	

Source: BDP 2100 Technical Team Analysis, 2015

Strategies for Urban Area

Strategy UA 1: Increase Drainage Capacity and Reduce Flood Risk in Urban Areas Sub-strategies:

- i. Integrated urban drainage improvement
- ii. Integrated flood risk management (in cooperation with the national flood risk strategy).

Strategy UA 2: Enhance Urban Water Security and Water Use Efficiency

Sub-strategies:

- i. Water availably and accessibility.
- ii. Improved water quality.

Strategy UA 3: Managing river systems and estuaries in newly developed areas

Sub-strategies:

- i. Land reclamation
- ii. Integration of River stabilization/erosion control and land reclamation with urban development.

Strategies for Urban Area

Strategy UA 4: Conserve And Preserve Urban Wetlands and Ecosystems and Promote Their Wise-useo

Sub-strategies:

- i. Urban wetland preservation
- ii. Promote urban green and blue spaces

Strategy UA 5: Develop Effective Urban Institutions and Governance

Sub-strategies:

- i. Improved urban planning
- ii. Improved implementation of urban plans

Strategy UA 6: Integrated and Sustainable Use of Urban Land and Water Resources

Sub-strategies:

- i. Introduction of integrated spatial planning in spatial policy making on national/regional scale.
- ii. Advancements in local urban planning and land use regulations.

Thank You

Open Discussion & Question-Answer