

Metamodel for BDP 2100

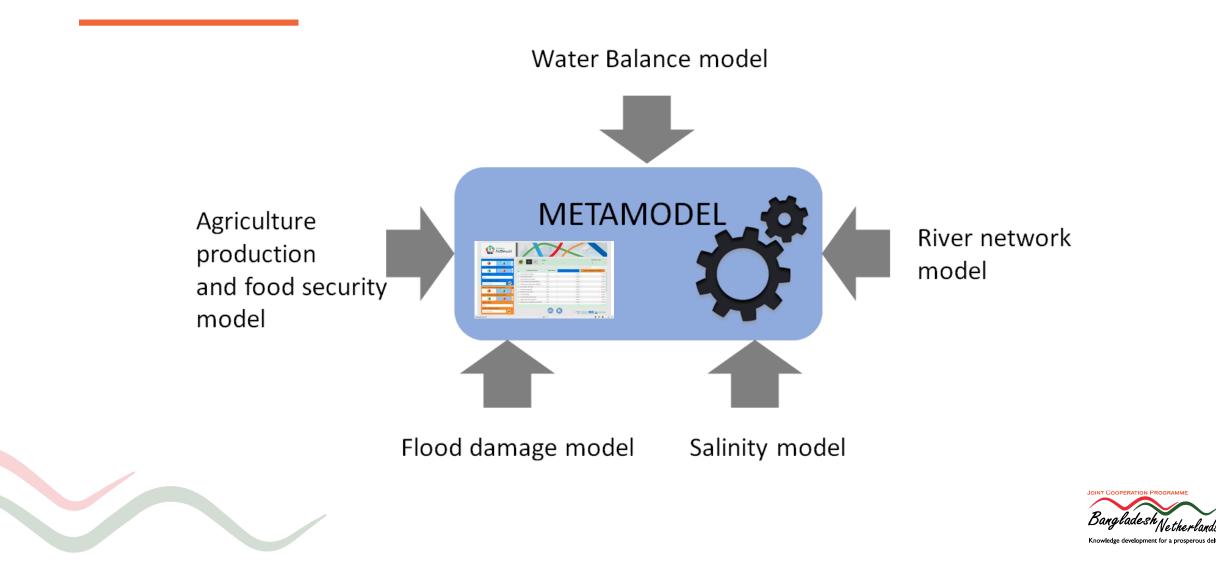
Presented by: Dr. Md. Taibur Rahman Deputy Chief (Former staff of GED) Currently works for UNDP on lien trsumon@gmail.com & Femke Schasfoort Deltares, Netherlands

Status July 2020

Technical Support from JCP Bangladesh Metamodel Team with four institutions: Deltares, WUR, IWM, CEGIS

Contents

- I. Short overview on progress of Bangladesh Metamodel developments and recent consultations
- 2. Impacts of BDP2100 climate change scenarios
- 3. Impacts of projects / programs in Atrai Hurasagar Basin
- 4. Impacts of projects / programs in Kurigram district*
- 5. Considerations
- 6. Future planning
- * Not in this presentation



What is a metamodel?

Metamodel: A model of models

Metamodel: In short

- Simplified simulation
- Based on results of detailed sectoral models
- Wide scope
- Short calculation time
- Less detail and accuracy in results
- No replacement for detailed models

Participatory model development – Recent consultations

- Internal SIBDP progress meeting (8-4-2020)
- Expert reflection session I (29-4-2020)
- GED meeting (7-5-2020)
- End User meeting (13-5-2020)
- Expert reflection session II on Agriculture and Food security (9-7-2020)
- Expert reflection session II on Water & Climate change (16-7-2020)
- Internal SIBDP technical progress meeting (13-7-2020)

(To be) planned:

- Structured interviews with agencies (July/August)
- GED meeting (July/early August)

jcpbd.nl

JOINT COOPERATION PROGRAMME

Bangladesh-The Netherlands

Home	About JCP	Apps	Old Brahmaputra	Polders of Future	Monitoring Water Quality	Water Food Nexus	BDP Metamodel	Metamodel Documents	ts Training Contact
					and ICZM) by key stał Water Resources and The Bangladesh Meta "Support to the Impler which will provide adv developed to support and programs. Anothe different agencies in E	n Meta Model the Metamodel is to sup scholders such as the Ger l others in investment pl n model is developed in mentation of the Banglad sory support to the GED. he formulation, analysis a r important objective of th langladesh for developing e to embed its maintenan	neral Economics Division anning and integrated close collaboration with esh Delta Plan 2100 (S The Bangladesh Metar and evaluation of alterna he programme is to buil g, using and owning the	n, Ministry of assessment. h the project IBDP2100)", model will be titive projects d capacity at Metamodel,	And and a second se
							latama dal Dat	a and Deabheard	u al

BDP Metamodel Data and Dashboard

SI. No.	Description	Data	Dashboard	
1	SIBDP Program Manager	Data	Dashboard	
2	Network module dashboard	Data	Dashboard	
3	Impact explorer light	Data	Dashboard	
4	Impact explorer full	Data	Dashboard	

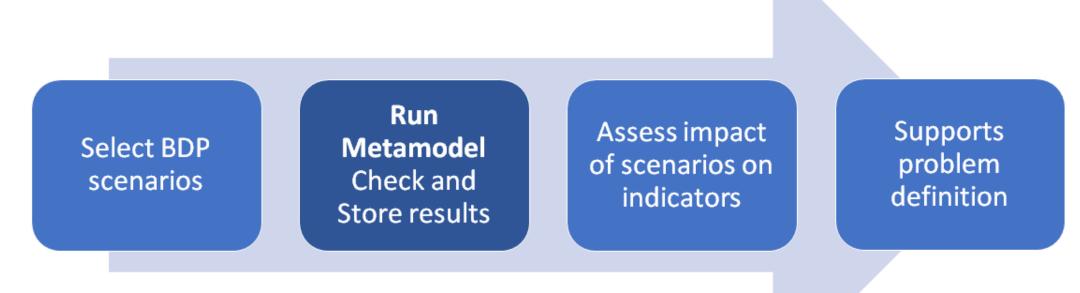
Joint Cooperation Programme (JCP), Copyright © 2019, All Rights Reserved

How can the metamodel be used?

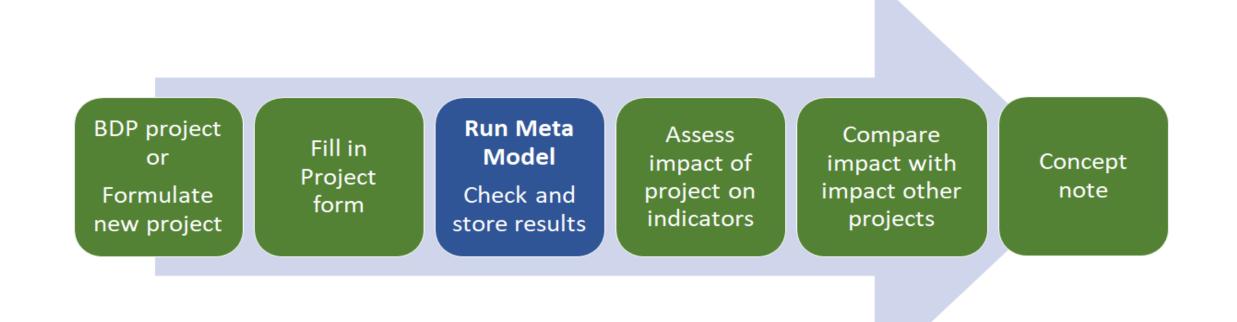
Two different types of users

I. As a planner at GED,

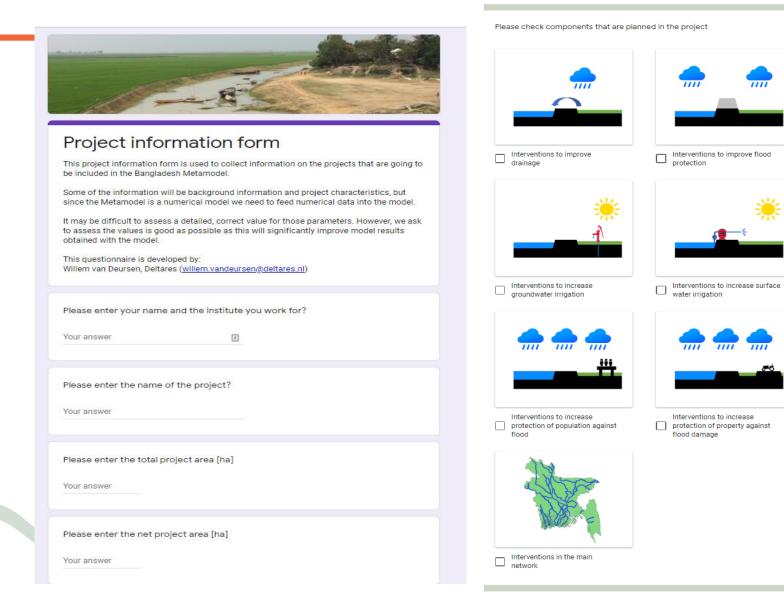
- To analyze and assess the impact of proposed projects / programs (within BDP 2100) on water resources and socio-economic aspects,
- It can advise decision makers on input for the 8th 5-year plan and updating of the BDP2100 Investment Plans.


2. As an officer at a Ministry or Agency,

- To analyze and assess the project proposals and sectoral plans based on BDP2100 for their integrated impact own and other sectors,
- so that I can adapt projects and the sectoral plans to improve their impact and thereby the likelihood that they are included in the input from BDP2100 for the 8th 5-year plan and updating of the BDP2100 Investment Plans.

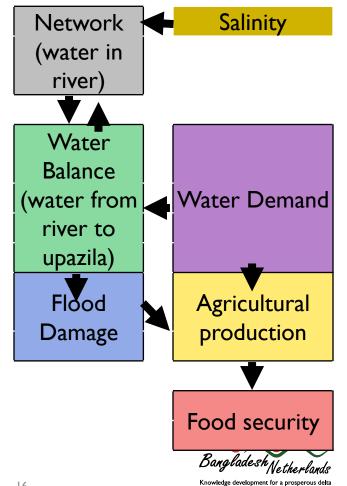

Use of metamodel: Scenario exploration

- Climate change scenarios
- Socio-economic scenarios



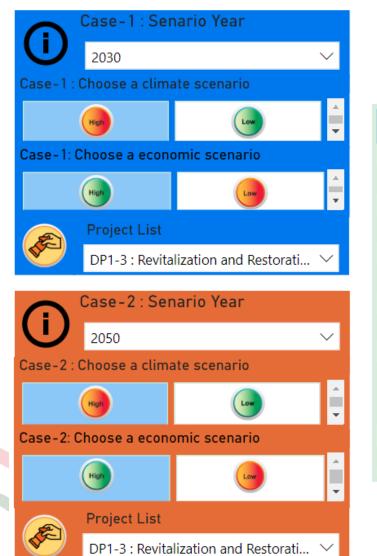
Use of metamodel: Impact of projects

Project information form


1111

Metamodel indicators

All decision support indicators are linked to the SDGs and the BDP2100 Goals Color represent modules * Results in progress


State Indicators	Decision Support Indicators
Environmental flow (m ³ /s)*	Annual rainfall damage (Taka)
Dry season river flow (m ³ /s)	River navigability (km/class)*
Annual flood extent (km²)	Rural access to safe drinking water (%)*
Appual flood duration (month)	Habitat area suitable
	for protective species (km ²)*
Extreme flood extent (km ²)	
Waterlogged area (km²)	
GWL at end of dry season (m)	
Flood damage (Taka)	Poor households affected
TIOOU Uattiage (Taka)	nental flow (m³/s)*Annual rainfall damage (Taka)son river flow (m³/s)River navigability (km/class)*lood extent (km²)Rural access to safe drinking water (%)*lood duration (month)Habitat area suitable for protective species (km²)*flood extent (km²)end of dry season (m)mage (Taka)Poor households affected by droughts, floods and salinity (%)*Displaced people due to disasters (%)*Rice production (Ton)Food security for the poor (%)
	Displaced people due to disasters (%)*
	Rice production (Ton)
	Food security for the poor (%)
Area affected by salinity (km2)*	Cost of project implementation (Taka)
Area affected by salinity (km2)*	Food security for the poor (%)

Metamodel engine module workflow

* Under development

<

|--|

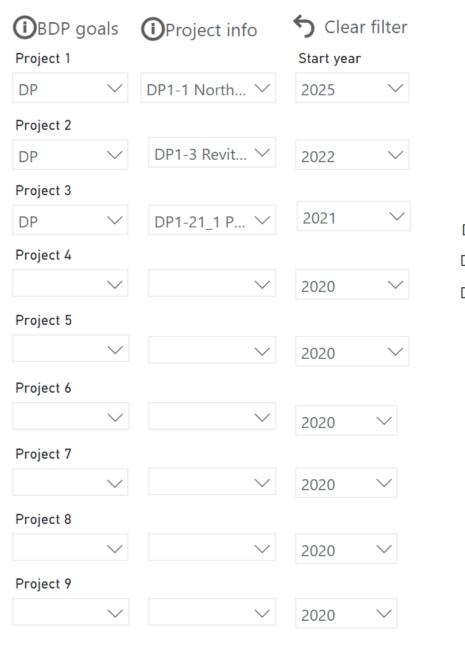
Ø	200	6D.C	Goal Name	Indicator Type		Division	
	BDP	SDG	All	\sim	All	\sim	All

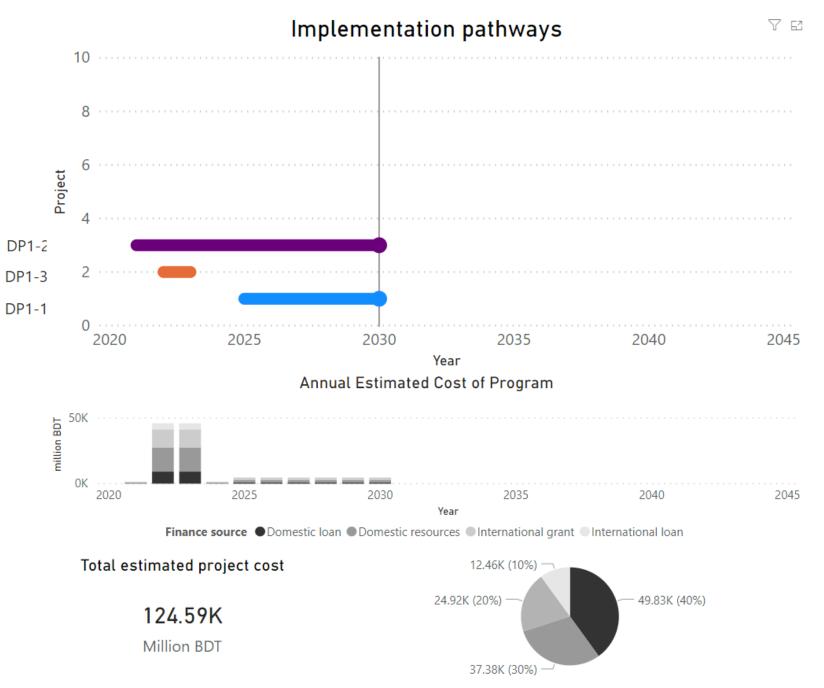
Indicators	Reference Value : Year 2020	← Case-1	Case-2
🕂 Annual rainfall damage (Taka)	* 534532187	4,096,069.78	4,046,839.19
🕂 Flood damage (Taka)	1 75417833	1,002,191.45	736,714.48
+ Waterlogged area (km2)	1 21487	21,747.41	21,036.92
Extreme flood extent (km2)	11842	13,963.17	11,843.53
+ Rice production (Ton)	1 4570	9,277.99	9,630.34
🕂 Annual flood extent (km2)	1 9381	9,152.64	7,993.04
+ Dry season river flow (m3/s)	1 771	555.15	614.20
+ Annual flood duration (month)	1 394	32.96	32.58
+ GWL at end of dry season (m)	-423	25.39	-94.99
 Poor households affected by droughts, floods and salinity (%) 	↑ 1	1.51	1.48
	1 53		

>

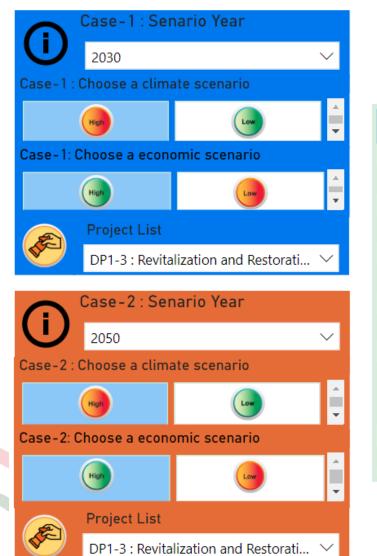
Use of metamodel: Impact of programs

Explore costs and impacts of projects on indicators, BDP goals & SDGs


Select a program (combination of projects) Run Meta Model Check and store results


Assess impact of programs on indicators

Compare impact with impact other programs Sectoral, Annual Development or 5-year plan



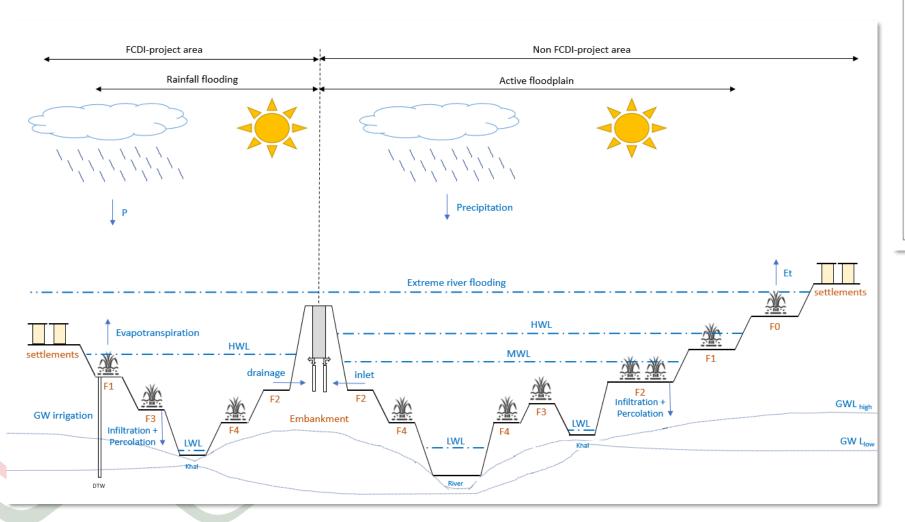
🎲 BDP 2100 Program Manager

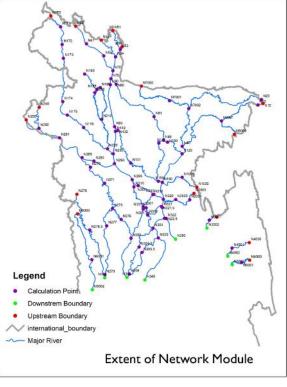
<

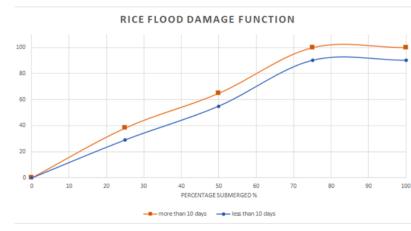
|--|

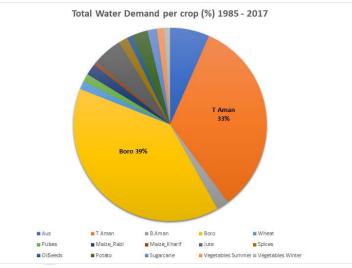
Ø	200	6D.C	Goal Name	Indicator Type		Division	
	BDP	SDG	All	\sim	All	\sim	All

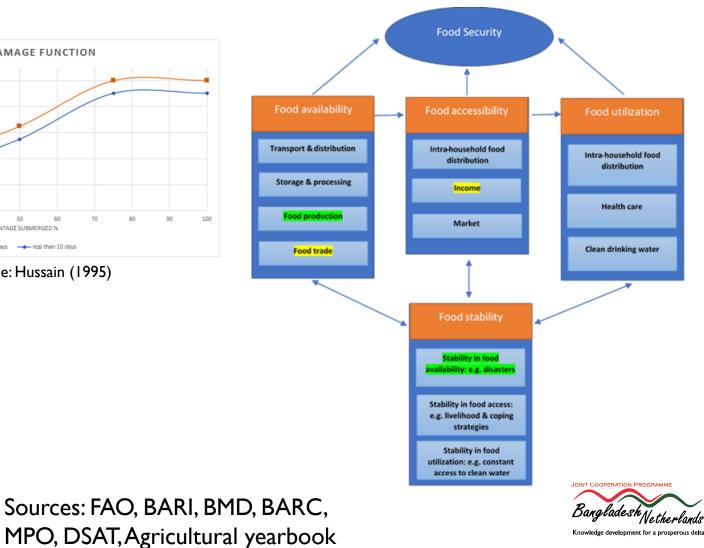
Indicators	Reference Value : Year 2020	← Case-1	Case-2
🕂 Annual rainfall damage (Taka)	* 534532187	4,096,069.78	4,046,839.19
🕂 Flood damage (Taka)	1 75417833	1,002,191.45	736,714.48
+ Waterlogged area (km2)	1 21487	21,747.41	21,036.92
Extreme flood extent (km2)	11842	13,963.17	11,843.53
+ Rice production (Ton)	1 4570	9,277.99	9,630.34
🕂 Annual flood extent (km2)	1 9381	9,152.64	7,993.04
+ Dry season river flow (m3/s)	1 771	555.15	614.20
+ Annual flood duration (month)	1 394	32.96	32.58
+ GWL at end of dry season (m)	-423	25.39	-94.99
 Poor households affected by droughts, floods and salinity (%) 	↑ 1	1.51	1.48
	1 53		


>


How does the metamodel work? (and first results)


Water distribution

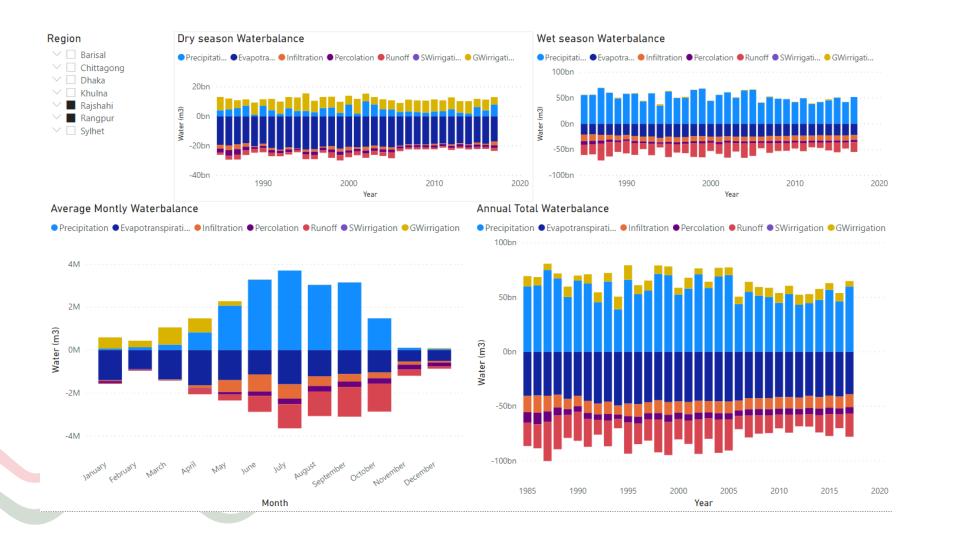




Agricultural water demand, production and food security

Source: Hussain (1995)

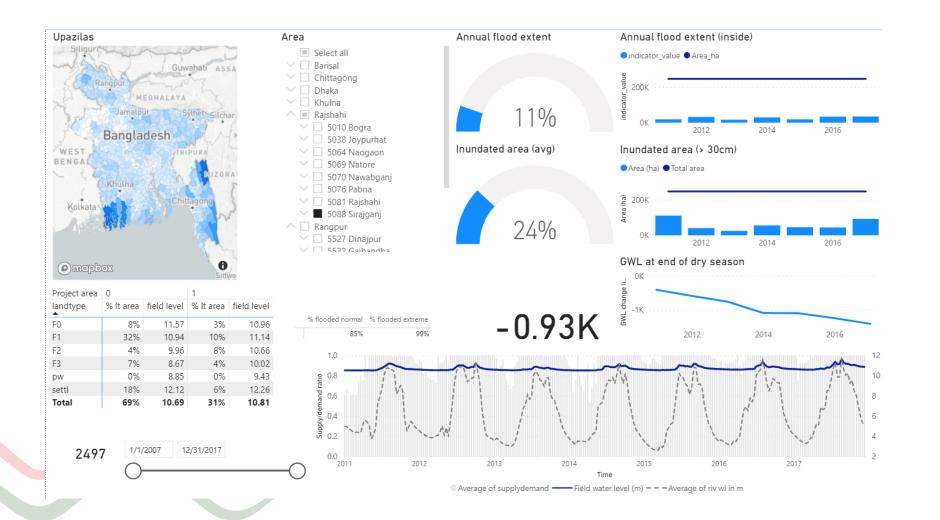
Source: Output MM, Penman-Monteith


Based on the most actual and complete data and nation-wide detailed models available in Bangladesh:

- National waterbalance, incl. river network
- National impact models: flood damage, agricultural production, food security, ...
- National BDP2100 project database
- First version of a metamodel and impact explorer to analyse and compare impacts of scenarios, projects and programs on water resources and socio-economic aspects.
- To be used in combination with SIBDP Program Manager to analyse investment requirements of programs.

Well established capacity in CEGIS and IWM!

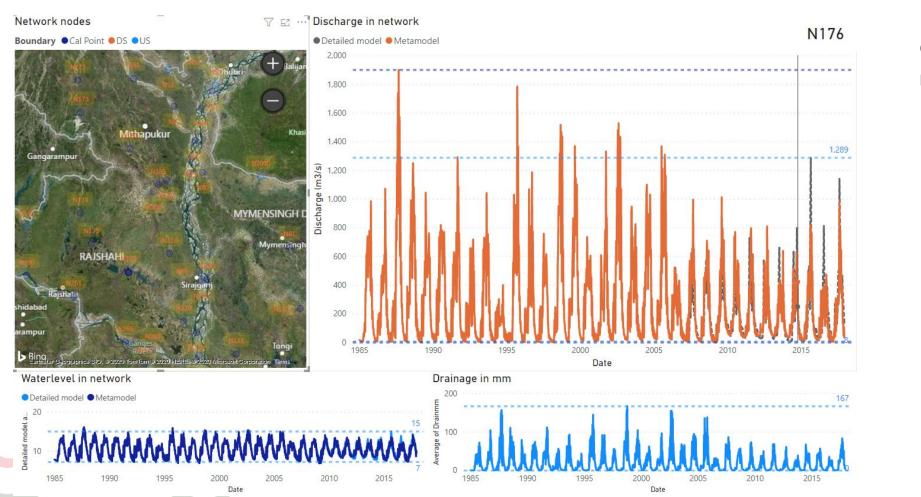
Example output: national water balance (extract North-West)


Main observations:

I. Clear seasonal diff
II. Large annual variation
III. Residual moisture
supplemented by GW
irrigation in beginning of
dry season

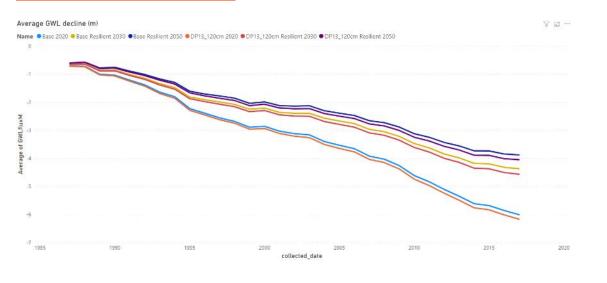
Available for every hotspot, division, and district in Bangladesh (currently calibrated for NW-region)

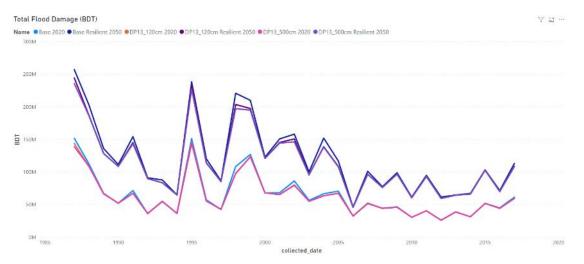
Example output: flooding and drought characteristics


Main observations:

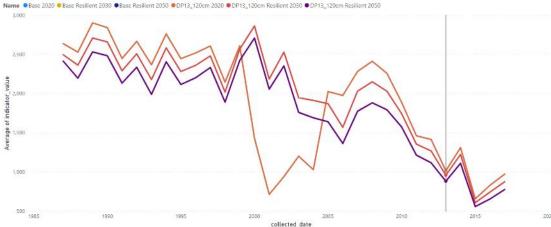
I. Large annual variation II. Distinction in river floods and rainfall floods III. Timing and duration of floods inside/outside embankments IV. Crop water supplydemand ratio ~100%

Available for every district in Bangladesh (currently calibrated for NW-region)


Example output: modelled discharges and waterlevels in main rivers



Output available for all major rivers in Bangladesh


Example output: temporal and spatial distribution for different indicators

YE

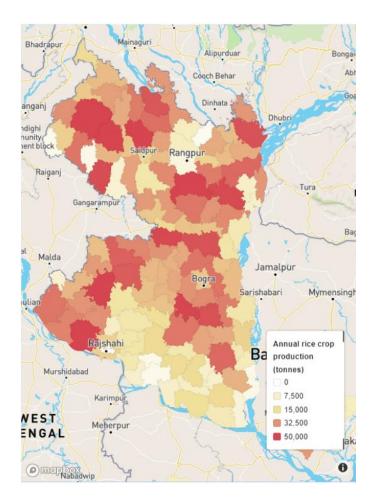
Dry season river flow (m3/s)

Scorecard BDP2100 climate change scenarios for NW-region

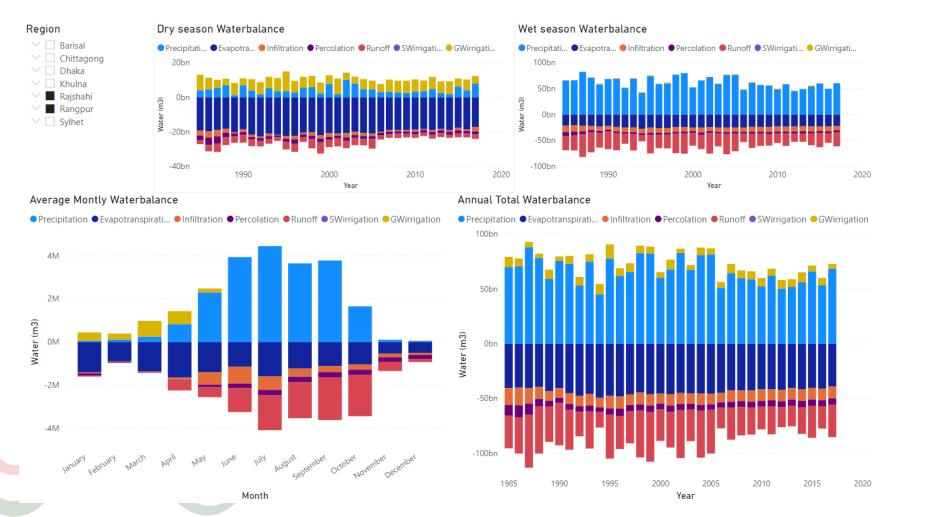
Scenario		Base								
			Produ	uctive	Resi	lient	Mod	erate	Act	ive
Climate situation		2020	2030	2050	2030	2050	2030	2050	2030	2050
Climate characteristics										
Sea level rise	cm	n/a	10 - 20	20 - 30	15 - 30	40 - 60	10 - 20	20 - 30	15 - 30	40 - 60
Temperature rise*	°C	n/a	0.5	1	1.5	2	0.5	1	1.5	2
Monsoon rainfall change	%	n/a	0	10	15	20	0	10	15	20
Dry season rainfall change	%	n/a	0	0	-10	-10	0	0	-10	-10
Peak discharge change	%	n/a	5 - 15	10-20	15 - 30	20 - 40	5 - 15	10 - 20	15 - 30	20 - 40
Low flow discharge change	%	n/a	-5	-15	-15	-30	-10	-25	-20	-40
Decision support indicators										
Annual flood damage (infrastructure, housing, etc.)	crore BDT	6.4	15%	37%	59%	88%	14%	37%	59%	88%
Poor households affected by droughts and floods		522	7%	37%	59%	81%	7%	37%	59%	81%
Annual rice crop production (T aman, Boro, Aus)	Mtonnes	10.4	-1%	-3%	-5%	-7%	0%	-3%	-5%	-7%
Food security for the poor: dietary energy supply	calories/day	n/a	-22%	-28%	-25%	-31%	-22%	-28%	-25%	-31%
Water system state indicators										
Total flood extent	% of area	29%	8%	13%	21%	28%	8%	12%	21%	28%
Extreme flood extent	% of area	47%	17%	22%	53%	64%	17%	22%	53%	64%
Flood duration	days	114	1%	9%	12%	15%	1%	9%	12%	15%
Dry season river flow (Atrai Basin)	m3/s	25	7%	0%	0%	-10%	4%	-7%	-3%	-17%
GWL decline per year	cm	9	-3%	-16%	-22%	-30%	-3%	-16%	-22%	-29%

Main observations:


- I. Much wetter in monsoon
- 2. Larger & longer annual floods, more extreme floods
- 3. Positive for GWL
- Dry season low river flow in Atrai basin decrease

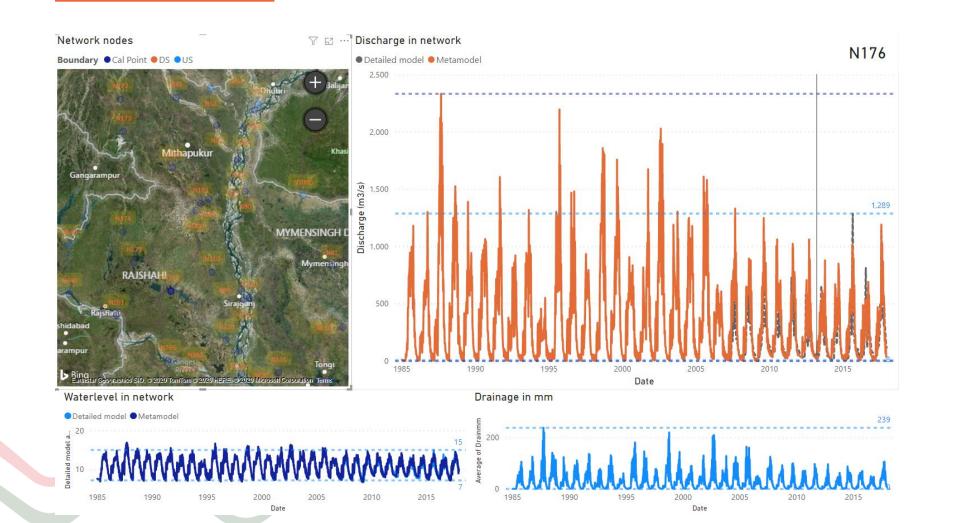

* effect on reference evapotranspiration

Preliminary result need to be verified! Excluding economic development scenarios!


Impacts BDP2100 climate change scenarios in time and space

Impacts of BDP2100 climate change scenarios

Main observations:


I. More rainfall -> more runoff 2. Slightly less GW irrigation + more percolation

Visualize river inflow/outflow

Impacts of climate change on river discharge



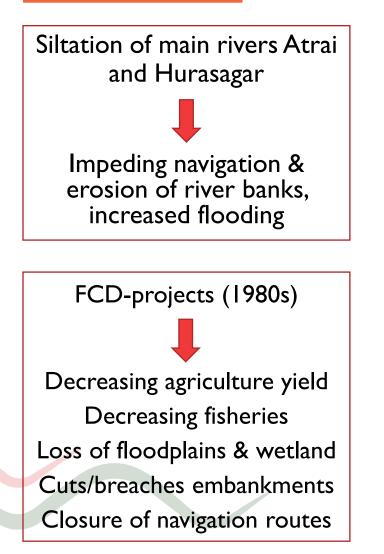
Main observations:

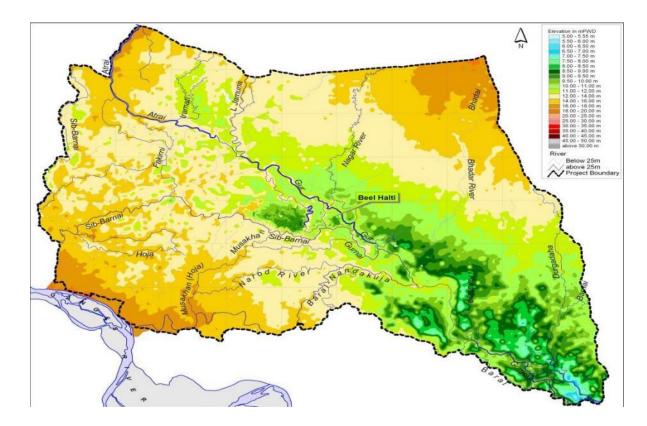
- I. Higher peak flows
- 2. More drainage from fields

Impact of climate change on low flow river discharge

Main observations:

I. Declining dry season river flows


Preliminary conclusions – Impacts of climate change on NW

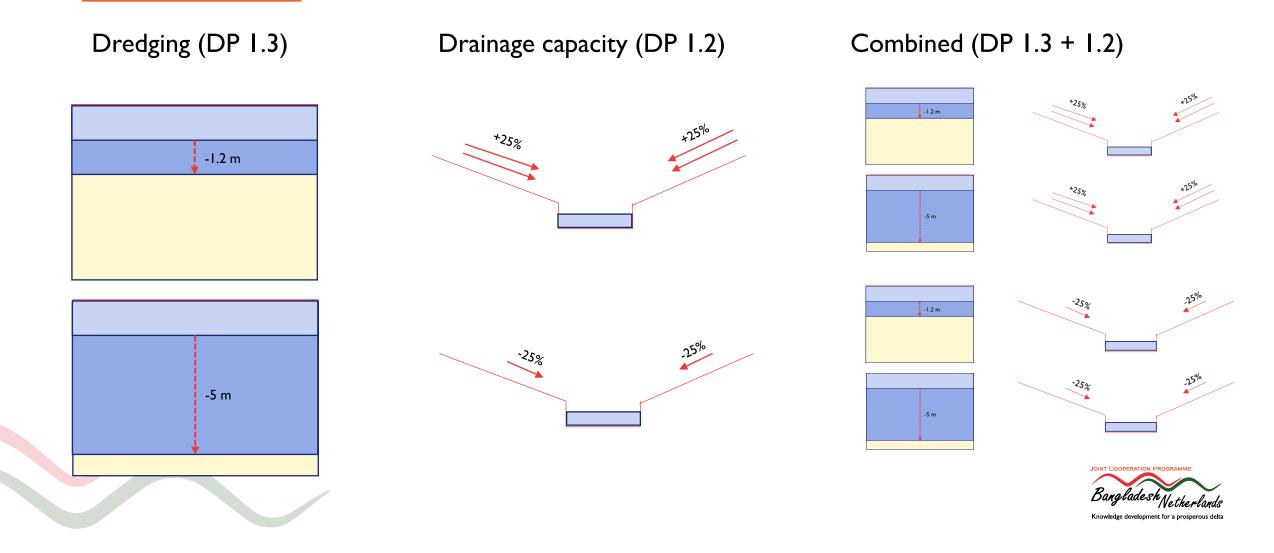

- The area becomes **much wetter** in the wet season, a **bit drier** in the dry season
- Leads to larger flood extents, flood depths with little bit longer duration
- Mainly leads to potentially more flood damage to infra and buildings, slightly more to rice crops
- Poor households will be increasingly affected and the dietary energy supply will go down
- Groundwater levels will **rise**, GW extraction remain stable, dry season water levels go down
- Drought damage to crops does not change substantially
- No change in signal in timing of floods, as these are not included in the scenarios using the delta method

Issues in Atrai – Hurasagar Basin

Source: Mathematical modelling for IWRM Chalan Beel incl. Beel Halti (IWM, 2005)

BDP2100 note: increased flooding may also be caused by impediments to drainage due to unplanned infrastructure

Suggested SIBDP projects in Atrai – Hurasagar Basin


• Revitalization & restoration of Hurasagar and Atrai rivers (DP 1.3)

- Dredging the Hurasagar and Atrai Rivers to increase discharge capacity and navigability
- 30 km river bank protection works along Atrai River to protect growth-centers against erosion
- Revitalization and restoration of Beel Halti / Chalan Beel (DP 1.2)
 - Option 5a) main public cuts with structures & closing all breaches, excavation Sib river, large structures
 -> low height embankments, + b) with additional FCD for Beel Halti area
- Implementation of rationalized water related interventions in Hurasagar basin (DP 1.21)
 - Program with measures: Infrastructure, knowledge, institutional

Interventions modelled

Impacts of projects in Atrai – Hurasagar Basin

Project		Base		DP 1.3a		DP 1.3b		DP 1.2a		DP 1.2b		DP1.3 + DP 1.2	
Rajshahi division		Without project		Revitalization Atrai and Hurasagar		Revitalization Atrai and Hurasagar		Revitalization Beel Halti		Revitalization Beel Halti			
					-		-					Dredging	- 1.20m +
								Drainage	e capacity	Drainage	capacity -	Drainage	capacity +
Option				Dredgin	g - 1.20m	Dredgin	g - 5.00m	+2	5%	2	5%	25	5%
BDP2100 scenario - Resilient		2020	2050	2020	2050	2020	2050	2020	2050	2020	2050	2020	2050
Decision support indicators													
Annual flood damage (infrastructure, housing, etc.)	crore BDT	77	148%	-8%	127%	-9%	123%	-7%	148%	27%	201%	-15%	39%
Poor households affected by droughts and floods		522	116%	-14%	90%	-17%	83%	-21%	116%	63%	216%	-36%	-1%
Annual rice crop production (T aman, Boro, Aus)	Mtonnes	89	-6%	2%	-4%	3%	-2%	1%	-6%	-1%	-9%	3%	1%
Food security for the poor: dietary energy supply	calories/day	n/a	-27%	2%	-25%	3%	-23%	1%	-27%	-1%	-29%	3%	-21%
River navigability*	km/class	n/a		++	-	++	-	0	++	0	+	++	+
Rural access to safe drinking water*	%	n/a	0	0	0	0	0	0	0	0	0	0	0
Habitat area suitable for protective species*	km2	n/a	+	0	+	0	+	0	0	0	0	0	+
Displaced people due to disasters*	%	n/a		0	-	0	-	0	-	0	-	0	-
Water system state indicators													
Total flood extent	% of area	21%	51%	-18%	27%	-33%	5%	1%	51%	-1%	48%	-18%	5%
Extreme flood extent	% of area	34%	124%	-9%	64%	-34%	37%	0%	124%	-2%	123%	-9%	31%
Flood duration	days	85	25%	-1%	26%	-7%	25%	-6%	25%	7%	27%	-8%	10%
Dry season river flow (Atrai Basin)	m3/s	25	-5%	0%	-5%	0%	-5%	0%	-5%	0%	-5%	0%	-3%
GWL decline per year	cm	9	-32%	3%	-29%	4%	-26%	10%	-32%	-13%	-48%	13%	-3%
Waterlogged area*	km2	n/a	++	-	++	-	0	0	+	0	+	0	0
Environmental flow*	m3/s	n/a	-	0	-	0	-	0		0		0	-
Area affected by salinity*	km2	n/a	0	0	0	0	0	0	0	0	0	0	0
Financial indicators													
Cost of project implementation	mill BDT		0	112	2800	112	2800	78	603	78	603	152	2100
Cost of project maintenance	mill BDT		0	32	400	32	400	0		0		324	400
Total cost	mill BDT		0	145	5200	145	5200	78	603	78603		184	1500

Main observations:

- Dredging + improved drainage improves flood situation for the short term
- 2. Negative impact on GWL decline per year
- 3. None of the calculated measures is robust for extreme climate change situation
 Note: the role of sediment is not included

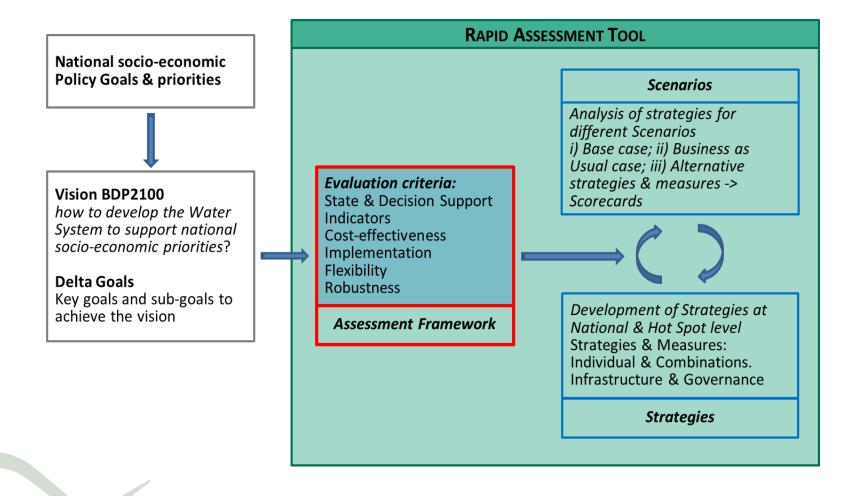
* not yet quantified; expert opinion

Considerations / recommendations

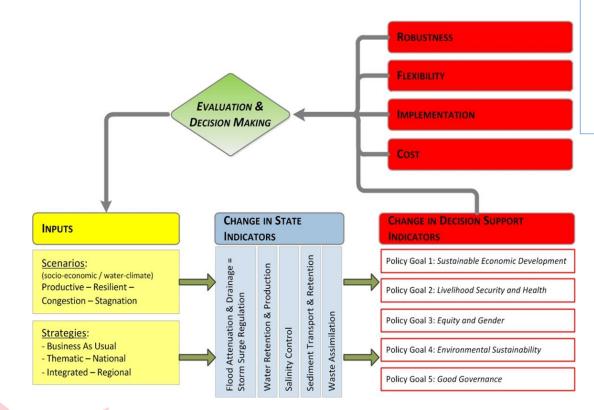
- Define project characteristics in close connection to SIBDP & project leads
- Verification with line agencies on project descriptions / configurations / BMM results
- Training & capacity building
- Publications & outreach

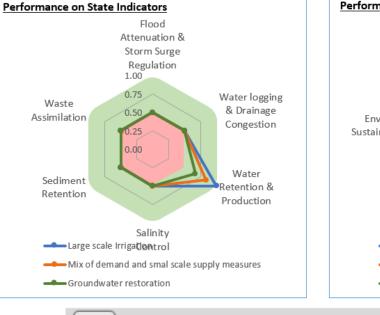
Planning Q3 and Q4 2020

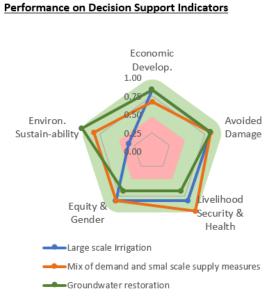
- Drafting Metamodel results for NW-region (July August)
- Focus on Coastal zone (July September)
 - Project descriptions and configurations
 - Including SW salinization
 - Including additional modules (Fisheries, Navigation, Ecosystem functioning)
- Expert reflection session(s) on Coastal zone (September)
- SIBDP & GED meetings on Coastal zone (September / October 2020)
- Expert reflection session(s) on other regions (Q4 2020)
- SIBDP & GED meetings on other regions (Q4 2020 / Q1 2021)


Use of results in decision support framework

- The metamodel provides a rich source of quantitative information on the impact of scenarios and projects.
- Not all the impacts of projects can easily be quantified (such as inequality)
- There is a need for an additional decision support framework




BDP2100 – Rapid assessment framework



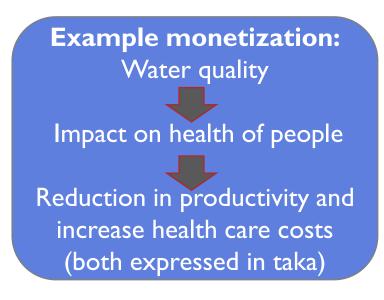
BDP2100 rapid assessment framework

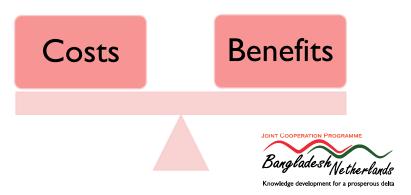
Home	Sustainable economic development	Score	
DSI-1	Sector Productivity (sectors derived from NSDS)		
DSI-1a	Agriculture	0,5	State Indicator
	cereals (rice, wheat, maize)	0,0	
	non-cereals (vegetables, fruits, non-food crops)	0,2	
DSI-1b	Livestock (milk, meat, eggs)	0,9	
DSI-1c	Fisheries	0,8	
	capture	0,9	
	culture	0,4	
DSI-1d	industry	1,0	
DSI-1e	Transport	0,2	
DSI-1f	Energy	0,8	
D5I-2	Economic Loss due to Floods		
DSI-2a	Agriculture	0,7	
D51-2b	Livestock	0,7	
DSI-2c	Fisheries	0,2	
DSI-2d	industry	0,9	
DSI-2e	Transport	0,4	
DSI-2f	Energy	0,8	
D51-2g	Housing	0,6	
DSI-2h	Infrastructure	0,1	
D5I-21	Health	0,8	
		Kn	owledge development for a p

Assessment frameworks?

- The assessment framework in the BDP2100 was mainly based on qualitative scoring.
- Now we have more quantitative information available (metamodel)
- What kind of decision support frameworks can be used?

Decision support frameworks


Which project to select based on the costs and effects?


Cost-benefit analysis

- Grounded in welfare theory
- Monetization of all effects
- Final result: Benefit-Cost Ratio, Net Present Value or Internal Rate of Return

<u>Multi-criteria analysis</u>

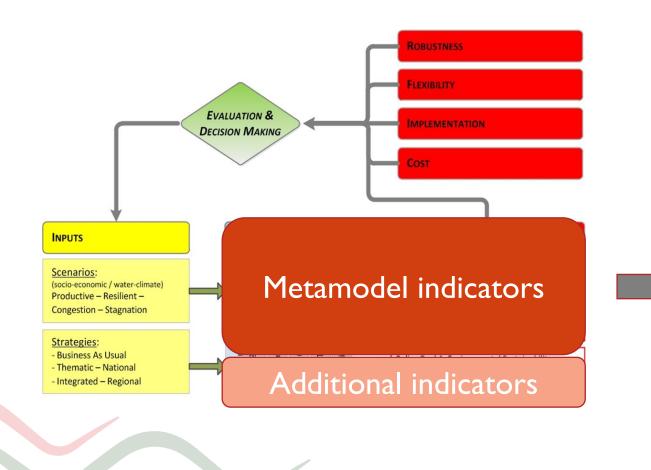
- Grounded in operation research
- Evaluates a multitude of qualitative and quantitative impacts and criteria
- Final result: Comparable score (dimensionless unit)

How could a MCA be set-up?

Select criteria

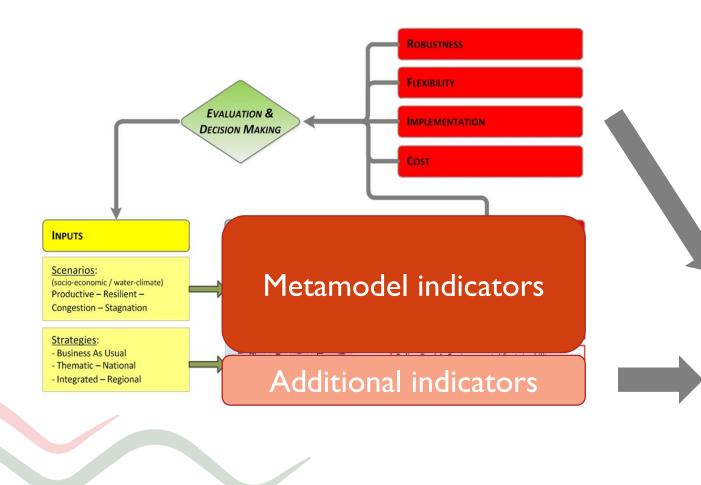
Score/Assess criteria

Assign weights


Standardize results

Multiply scores with weights

Method:Weighted summation



Indicator selection – Use of Metamodel indicators

ΜΕΤΑΜ	ODEL INDICATORS
	vstem indicators
	Annual river flood duration
	Extreme river flood extent
	Coastal flood extent
	Waterlogged area
	Dry season river flow
	Ground water level at end of dry season
	Area affected by salinity
Environn	nental indicators
	Environmental flow
Economi	c impact indicators
	Flood damage
	Crop production
	Fish production
	River navigability
Social im	pact indicators
	Food security
	Households affected by droughts, floods and
	salinity
	Displaced people due to disasters
	Access to safe drinking water
Other in	dicators
	Investment costs
	Operation and maintenance costs

Indicator selection – Use of other indicators

INDIC	ATOR
	system indicators
	Annual flash floods
	River bank erosion
Enviro	nmental indicators
	Biodiversity
	Red list species
	Restoration of natural habitats
	Water quality in water bodies
	Water quality in rivers
Econor	mic impact indicators
	Inequality (in flood, salinity and drought damages)
	Employment – short term
	Employment – long term
	Economic growth
	Poverty
Social i	impact indicators
	Access to sanitation
	Health
ADM i	ndicators
	Flexibility
	Reconciliation
	Robustness
	Innovative
	Holistic
Other	indicators
	Cost recovery potential
	Societal support
	Inclusiveness
	Impact on institutional capacity

How could a MCA look like - Standardization

Indicators	Unit	Baseline (current situation)			
		Without project	Project I	Project 2	
Indicator I	Million Taka	30	25	20	
Indicator 2	%	34	30	32	
Indicator X	Score	0	-2	I	

Indicators	Unit	Baseline (current situation)			
		Without project	Project I	Project X	
Indicator I	Million Taka	0	0.5	I	
Indicator 2	%	0	I	0.5	
Indicator X	Score	0.5	0.3	0.6	

Calculation final score (example)

Image: Note of the state of	Weight	Indicators	Unit	Baseline (current situation)					
Indicator 2 % 0 0 I IO IO 0.5 5				Without pro	Without project Project I			Project X	
	40	Indicator I	-	0	0	0.5	20	I	40
50 Indicator X Score 0.5 25 0.3 15 0.6 30	10	Indicator 2	%	0	0	I	10	0.5	5
	50	Indicator X	Score	0.5	25	0.3	15	0.6	30
TOTAL 25 45 75	TOTAL			2	25	4	5	7	'5

Considerations

Requirements

- Qualitative scoring \rightarrow Expert judgement
- Weighting \rightarrow Involvement of policy makers

How will a MCA be used?

